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5Microarray of 16S rRNA Gene Probes 
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Abstract
Deciphering microbial communities and their 
role in Earth’s biosphere is crucial for addressing 
challenges in human health, agriculture, biore-
mediation and other natural processes. While 
next-generation sequencing platforms are still 
under development to improve accuracy, read 
length and sequencing depth, microarray-based 
methods have become an attractive alterna-
tive for 16S rRNA gene microbial community 
comparisons. The hybridization method is 
well-established in the laboratory. Thus, main 
areas of improvement lie with the development 
of enhanced bioinformatics and statistical pro-
cedures for microarray data, rather than with 
improvements to the platform itself. In this 
communication we applied recently-developed 
bioinformatics tools to re-analyse G3 PhyloChip™ 
DNA microarray data acquired from deep ocean 
samples collected during the 2010 Deepwater 
Horizon oil spill in the Gulf of Mexico. We show 
that data collected with the G3 PhyloChip assay 
can be analysed at various stages of resolution, 
from individual probes to pairs of probes to quar-
tets of probes and finally at the commonly used 
probe-set level where each probe-set is associated 
with one operational taxonomic unit (OTU). 
Our analysis methods comprised topological 
data analysis (TDA) to facilitate the detection 
of outlier bio-specimens and the reconstruction 
of empirical OTUs (eOTUs) in an unsupervised 
manner, without the need for pre-defined refer-
ence OTUs (rOTUs). We observed that the 
quartet level provided sufficient resolution for 
identifying a subtle outlier sample with TDA, 
while the eOTU reconstruction was useful for 

annotation of the taxa associated with significant 
population changes in the elevated hydrocarbon 
waters. The presented methods will improve the 
deduction of important biological processes from 
G3 PhyloChip experiments.

Introduction
Microorganisms represent the greatest biomass of 
Earth’s biosphere. They have the largest metabolic 
variety of all organisms and consequently con-
tribute profoundly to carbon, nitrogen, sulfur and 
phosphorus cycling on the planet (Falkowski et 
al., 2008). These cycles are necessary to maintain 
life across all kingdoms, support environmental 
homeostasis by bioremediation of pollutants, and 
process nutrients in the human gut as examples. In 
their natural habitat, microorganisms have been 
shown to act as a community rather than as mono-
species with independent metabolism, although 
some exceptional cases have been posited (Chiv-
ian et al., 2008). Communities are assemblages 
of tens to thousands of species, whose individual 
populations fluctuate based on changes in local 
stimuli. Thus far, we have incomplete knowledge 
of community dynamics and the impact on meta-
bolic networks, since microbiologists have mostly 
studied microbes under artificial laboratory con-
ditions where typically single strains of bacteria 
or archaea are monitored. The diversity of strains 
observed in a laboratory is limited by our knowl-
edge of nutrient, temperature, and atmospheric 
needs of a given organism. Consequently, it is not 
surprising that the number of microorganisms that 
can be cultured under artificial laboratory condi-
tions was estimated to be only 1% of all bacteria 
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and archaea that had been discovered via culture-
independent molecular techniques (Amann et 
al., 1995; Colwell, 1997). Recent metagenomic 
studies, however, increase the discovery of bio-
logical dark matter and help illuminate uncultured 
microorganisms (Castelle et al., 2013; Marcy et al., 
2007; Rinke et al., 2013; Wrighton et al., 2012). 
A recently documented example of uncultured 
archaea and bacteria interdependence is the 
metabolic pathway of anaerobic methane oxida-
tion. Here, archaea are able to oxidize methane, 
which is found in high amounts in the deep ocean, 
because of the exergonic redox potential pro-
duced by bacteria through active sulfate reduction 
(Moran et al., 2008; Orphan et al., 2001). Neither 
of the two organisms has been grown in pure cul-
ture under laboratory conditions because of their 
strong interdependence via synthophy (Morris et 
al., 2013).

Based on the low cultivability of most 
microbes and their interdependence as a commu-
nity, examining all microorganisms’ population 
dynamics simultaneously, or tracking the whole 
microbiome, in the natural environment or within 
clinical studies is desirable. The urgency of apply-
ing whole-microbiome methods is growing as 
diseases have become linked to the microbiome 
(Cho and Blaser, 2012). Determination of the 
microorganisms undergoing population changes 
in response to a stimulus is the primary step in 
the elucidation of metabolic interactions within a 
community. For example, renal disease is known 
to raise systemic urea and was hypothesized 
to influence nitrogen metabolic flux in the gut 
mucosal environment. As a first step in mapping 
the microbial enzymatic pathways consequently 
up-regulated, populations of all known bacteria 
were profiled from faeces of uraemic patients and 
compared to control patients to determine the 
significantly increased populations within Halo-
monadaceae, Moraxellaceae, Polyangiaceae and 
other families (Vaziri et al., 2013).

The field of microbial ecology aims to under-
stand microorganisms in their natural habitat and 
how they interact with biotic (e.g. other organisms) 
and abiotic factors (e.g. temperature). Similar to 
all branches of ecology, microbial ecology col-
lects data on population shifts in order to propose 
hypotheses towards further understanding their 

mechanisms. Some examples to date include the 
study of healthy and diseased states as investigated 
by the Human Microbiome Project (Wortman et 
al., 2010), between wild type and knock-out mice 
(Frantz et al., 2012; Noval Rivas et al., 2013), 
between soils in dissimilar biomes as investigated 
by the Earth Microbiome Project (Gilbert et al., 
2010a,b) and between contaminated and pristine 
waters as investigated by bioremediation scientists 
(Dubinsky et al., 2012; Lin et al., 2006). The most 
useful techniques are those that provide repro-
ducible detection of population changes across a 
diverse range of all known bacteria. Furthermore, 
those techniques should not be limited to moni-
toring only the dominant populations, but should 
be sensitive to shifts in minority populations as 
well, since some microbes are 10,000-fold less 
abundant than majority members.

The method employed in thousands of pub-
lished manuscripts to collect data on population 
dynamics is the amplification, classification and 
quantification of 16S rRNA genes from an entire 
community. The 16S rRNA gene with its nine 
hyper-variable regions spread over approximately 
1.5 kb is ideal for straightforward amplifica-
tion using primers that flank the hyper-variable 
spans. Typically, the amplification step creates 
over 1 µg of amplicons comprising 10 billion to 
a trillion double-stranded DNA molecules. The 
base sequence differences allow taxonomic iden-
tification (DeSantis et al., 2006). The quantities 
of each taxa-specific amplicon can be compared 
across patient groups, biomes, etc. Initial enu-
merations with cloning and sequencing of the 
16S rRNA gene amplicons sampled tens to thou-
sands of molecules per specimen (as an example 
see Radosevich et al., 2002). Later, massive 
parallel amplicon sequencing, or next-generation 
sequencing (NGS) popularized by Roche and 
Illumina platforms, allowed molecular barcoding 
of multiple biospecimens followed by inexpensive 
clone-less sequencing of multiple biospecimens 
that simultaneously enabled the routine sampling 
of 10K to 100K short 16S rRNA molecules per 
specimen ( Jumpstart HMP Consortium, 2012). 
By 2006 general NGS optimism was at its peak 
due to a series of successful shotgun genome 
sequencing projects where short overlapping 
reads were assembled into a consensus genome 
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(Moore et al., 2006). The optimism was extended 
to 16S applications with the assumption that 
sequencing quality, lengths, and depths would 
continue to improve so that in standard produc-
tion individual reads could reliably be associated 
with specific taxa. In fact, it was demonstrated 
in silico that short 250 base subsegments of 
Sanger-derived 16S rRNA genes could allow 
identification of many genera (Liu et al., 2008) 
and it was expected that real NGS reads would 
perform similarly.

As NGS 16S rRNA gene sequence data sets 
were published, the limitations of NGS proto-
cols became better understood. As commonly 
practised, barcoding and multiplexing samples in 
cost-saving work-flows results in both (1) barcode 
biases, where perceived community structure 
could be influenced by the barcode assigned 
(Alon et al., 2011; Berry et al., 2011) and, (2) 
non-uniform sampling depth, where some sam-
ples within a multiplexed experiment are sampled 
at only ~1/10th to ~1/100th as thoroughly 
as other samples (HMP Consortium, 2012b), 
creating difficulties in comparative metrics of 
alpha-diversity. Currently, it is not expected that 
NGS results would be reproducible for the human 
microbiome or other complex communities 
(Zhou et al., 2011, 2013), both due to the limita-
tions of sequencing only thousands to millions 
of reads out of the billions generated (Caporaso 
et al., 2012b; Haegeman et al., 2013) and due to 
base-calling errors not explained by quality scores 
making individual bases or read segments dif-
ficult to filter (Engelbrektson et al., 2010; Kunin 
et al., 2010). Diversity, or specifically richness, 
is largely inflated by the NGS technique itself 
(Kunin et al., 2010; Quince et al., 2009; Reeder 
and Knight, 2009) adding unverifiable ribotypes 
to compositional data. High numbers of chimeras 
are created but are difficult to identify (Edgar 
et al., 2011; Haas et al., 2011) and the filtering 
stringency affects alpha-diversity. The previously 
held assumption that 16S rRNA NGS allowed a 
true representation of the community structure 
(percentage of community attributed to each 
taxon population) within a sample has now been 
called into question since the comparison of the 
same 21 member ‘even’ mock community (HMP 
Consortium, 2012a) processed through both 

Roche and Illumina platforms gave surprisingly 
different perceptions of what organisms domi-
nated the community. For example, depending on 
the protocol, Staphylococcus aureus was perceived 
as comprising from 2.8% to as much as 50.1% 
of genomic DNA where a known proportion of 
approximately 5% was prepared (Edgar, 2013). 
This unsettling recent report will surely gener-
ate further mock community experiments and 
protocol refinement since it was based on gDNA 
preparations in separate laboratories, which may 
contribute to the unexpectedly high 17-fold 
variation. Since NGS readings of 16S rRNA gene 
amplicons do not produce an unambiguous docu-
mentation of the underling community, results 
should be interpreted only in comparisons to 
samples processed with the exact same protocol.

In 2010, the third generation of broad-
spectrum phylogenetic microarrays, the G3 
PhyloChip, was introduced to the field of environ-
mental microbiology (Hazen et al., 2010). Prior 
to this, the second generation, or G2 PhyloChip 
(DeSantis et al., 2007) had been applied to the 
study of urban aerosols (Brodie et al., 2007), 
clean room environments (Probst et al., 2010), 
CO2 elevated soil communities (He et al., 2012) 
and various human clinical samples (Maldonado-
Contreras et al., 2011; Saulnier et al., 2011). G2 
PhyloChip probes were designed to comple-
ment only the sense strand of the contemporary 
knowledge base of sequences (DeSantis et al., 
2006). The G3 chip is preferred over the G2 due 
to the broadening of 16S rRNA gene sequence 
diversity uncovered in recent years (McDonald et 
al., 2012). Compared to the second generation of 
the PhyloChip, the G3 contains a greater diversity 
of probes complimenting both strands, sense 
and anti-sense, of 16S rRNA gene sequences for 
greater sensitivity to population dynamics across 
diverse taxa. The array comprises a square grid of 
1,016,064 features containing 994,980 different 
probes complementing all known taxa, cultured 
and yet-to-be-cultured, within both the Archaea 
and Bacteria. It contains mis-matching probes that 
serve as controls for each complementing probe 
and replicate probes for internal assessment of 
signal variation (Hazen et al., 2010).

The PhyloChip approach overcomes many 
of the NGS difficulties by separating each 
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biospecimen on physically separate arrays, 
eliminating barcode biases and avoiding non-
uniform sampling depth otherwise introduced 
by multiplexing. The most attractive feature of 
the PhyloChip approach is the ability to expose 
up to 1 trillion amplicons to the probes. Since the 
probes are spatially separated, data are collected 
from each probe in each experiment, allowing 
minority community components to be meas-
ured. It is impossible in the foreseeable future for 
NGS workflows to take routine measurements 
on the minority components since typically ~1 
million (which is only 1 millionth of 1 trillion) or 
fewer molecules are represented in the data. The 
ability of the PhyloChip G3 array to track changes 
in bacterial and archaeal abundance was evalu-
ated using a latin-square quantitative design with 
26 different microbial species mixed in 26 rand-
omized concentration levels from 1× to 0.0005×, 
replicated three times on different days. Technical 
variation, or the variation in replicate measure-
ments for the identical probe sequence, was low 
(CV = 0.097) and the correlation between analyte 
concentration and fluorescence signal was high 
(r = 0.941) (Hazen et al., 2010), indicating that 
the PhyloChip G3 is reproducibly sensitive to 
changes in microbial abundance within complex 
samples across four orders of magnitude. So far, 
the PhyloChip G3 has been successfully used on 
samples of a great variety of different biotopes, 
such as human microbiome (Renwick et al., 
submitted), sulfidic freshwater springs (Probst 
et al., 2013), low biomass clean room environ-
ments (Cooper et al., 2011; Vaishampayan et al., 
2013), animal models of disease (Lam et al., 2012; 
Miezeiewski et al., submitted), high-altitude bio-
aerosols (Smith et al., 2013), coral reefs (Kellogg 
et al., 2012, 2013), citrus plant leaves (Zhang et al., 
2013), hot springs (Briggs et al., 2013), wastewa-
ter treatment reactors (Wang et al., 2013), biofuel 
reactors (Wu and He, 2013), and soils (Ding 
et al., 2013; Hayden et al., 2012; Mendes et al., 
2011). The first published G3 study examined 
water samples from the Gulf of Mexico during the 
Deepwater Horizon oil spill (Hazen et al., 2010), 
one of the greatest environmental catastrophes in 
the history of the production and conversion of 
fossil fuels. Approximately 4.1 million barrels of 
oil were released into the Gulf of Mexico between 

April and July 2010, which comprised a variety 
of liquid hydrocarbons (saturated, aromatic and 
polar) and gaseous components (Camilli et al., 
2010; Hazen et al., 2010; Kessler et al., 2011; 
Reddy et al., 2012; Valentine et al., 2010). From 
a microbiological perspective, the catastrophe has 
been studied with many different tools including 
metagenomics and metatranscriptomics to under-
stand its effects on the natural environment of the 
ocean (Baelum et al., 2012; Dubinsky et al., 2013; 
Hazen et al., 2010; Mason et al., 2012; Redmond 
and Valentine, 2012; Rivers et al., 2013; Valentine 
et al., 2010).

In this book chapter, we re-analysed PhyloChip 
G3 data collected during the Deepwater Horizon 
oil spill using a novel bioinformatics technique 
as well as a topology-based approach called TDA 
(Lum et al., 2013). Rather than using probe-sets 
complimenting database reference-based OTU, 
or ‘rOTU’, scoring (Hazen et al., 2010), we 
employed a detailed, non-OTU, probe-by-probe 
approach as well as an empirical approach to 
define OTUs, or ‘eOTUs’, using taxonomically 
related probes highly correlated in observed 
fluorescence intensity (FI) across samples. We 
also present two intermediate pipelines and their 
effects on outlier determination and biological 
interpretation. Moreover, the metadata for each 
sample is utilized to find significant influences of 
environmental factors on the microbiome struc-
tures observed. The analysed dataset was acquired 
from 17 samples, 10 taken within and 7 outside 
the oil plume generated from the rupture point.

The analysis methods herein are presented as a 
resource for microbial community ecologists and 
bioinformaticists when considering the benefits 
of low-level versus high-level data analysis. We 
present the benefits of probe-level analysis for 
finely separating samples into subgroups and the 
benefits of probe-set level analysis for taxonomic 
annotation of population dynamics.

PhyloChip G3 data analysis

PhyloChip data are compact and 
rich in information
According to current standard protocols, 500 ng 
of PCR product are amplified from one sample, 



PhyloChip Analysis of Disparate Microbiomes | 103

fragmented and hybridized onto a single array. 
Assuming an average GC content of 54% (based 
on the entire Greengenes database release August 
2012) and approximately 1465 bp amplicons 
of the 16S rRNA gene, 3.3 + E11 molecules are 
assayed with one single array, which is at least 
one hundred times more molecules compared to 
even the deepest sequencing technologies such as 
dedicating an entire run of 16 lanes and two flow 
cells in an Illumina HiSeq 2000 (http://www.
illumina.com/systems/hiseq_comparison.ilmn; 
Table 5.1). As far as the authors are aware, no 
sequencing facility is operating at this depth for 
routine 16S rRNA amplicon analysis. Moreover, 
the raw data of one single PhyloChip uses only 26 
Mb of storage, which converts to approximately 
8 × 10−5 bytes per molecule assayed (Table 5.1). In 
comparison to data from platforms that are based 
on 16S rRNA gene sequencing, microarray data 
is compact, easy to move across data networks, 
and rich in information, making the PhyloChip 
technology suitable for high-resolution micro-
bial community profiling. In the analysis steps 
presented in the following sections, the data is 
examined as (1) single probes, (2) probe-pairs, 
(3) sense and antisense pairs combined as probe-
quartets and (4) as larger sets of probes associated 
with an eOTU (= taxonomically classified set 
of probes). We demonstrate that the compact 
microarray data is well-suited to data mining and 
elucidates microbial community changes at all 
four resolutions.

Sinfonietta for empirical OTU 
discovery
Previously, PhyloChip probe florescence from 
samples collected from the Deepwater Horizon 
oil spill (Hazen et al., 2010) was compared to 
approximately 60,000 bacterial and archaeal 

reference OTUs spanning the entire Greengenes 
database (DeSantis et al., 2006). The analysis 
method presented at that time, termed ‘PhyCA’, 
was restricted to these pre-defined OTUs and 
pre-defined sets of probes for each OTU. In the 
method presented here, termed Sinfonietta, the 
probes are placed into probe sets after the data is 
collected, coupling the microarray’s sensitivity to 
shifts in abundance with exploring microbial com-
munities beyond a reference database.

In Sinfonietta, the empirical finding of eOTUs 
is a multi-stage process. The first stage of pixel 
summarization of the florescent image, back-
ground subtraction, noise estimation and array 
scaling were conducted as previously described 
(Hazen et al., 2010). Array fluorescence intensity 
(FI) of each pixel in an image was collected as 
integer values ranging from 0 to 65,536 providing 
216 distinct FI values. The summary of FI for each 
single probe feature on the array was calculated 
by ranking the FI of the central 9 of 64 image 
pixels and using the value of at 75th percentile. 
Background was defined as the mean feature FI in 
the least bright 1% of features in each of 25 equally 
divided sectors of the image. The background was 
subtracted separately in each sector. Next, all 
probes on the array were scaled by multiplication 
with a single factor so that average FI of the probes 
perfectly matching the non-16S spike control mix 
were equal.

The Sinfonietta method provides the options 
to evaluate the probes, probe-pairs, probe-
quartets and/or probe-sets (eOTUs). In the 
least summarized option, values from redundant 
probes were averaged, and then all values were 
log2-transformed to generate the simple probe-
level table representing the responses of 994,980 
probes across 17 samples. Pairs of probes are two 
probes with similar but non-identical sequences 

Table 5.1 Comparison of data and information storage of KPɈLYLU[ community WYVÄSPUN WSH[MVYTZ

Feature 7O`SV*OPW G3 454 GS FLX+
0SS\TPUH HiSeq 
2000 (paired-end)

0SS\TPUH MiSeq 
(paired-end)

Number of TVSLJ\SLZ assayed 3.30 × 1011 1.00 × 106 3.00 × 109 1.00 × 107

Disc space required of raw 
data in Gigabytes

0.025 GB 0.7 GB 30 GB 10 GB

Disc space per TVSLJ\SL 
assayed in Bytes

8.26 × 10ò� 7.34 × 104 1.07 × 101 1.07 × 103
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which align along ≥23 bases with ≥1 mismatch or 
gap as determined by blastn (Altschul et al., 1990) 
(-word_size 8 -dust no -perc_identity 92 -evalue 
0.005 -penalty −1). Although all probes can 
produce minor fluorescence from non-specific 
hybridization, if a sequence-specific hybridization 
has occurred the probe complementing the target 
will be brighter than its mis-matching mate as has 
been observed in 70% of controlled experiments 
using pairs (Furusawa et al., 2009). As a general 
caution, perfect matching probes (PM) were 
considered positive if they fulfilled the following 
criteria in comparison to their corresponding 
mis-matching probes (MM). (A) PM/MM≥1.5, 
(B) PM-MM≥50*N and r≥0.95, where N is the 
array specific noise, and r indicates the response 
score (Hazen et al., 2010). In total, the FI values 
for 32,011 pairs passed these thresholds in three 
or more samples. To invoke greater stringency, the 
two strands of the double-stranded PCR products 
were leveraged to remove pairs if both sense pairs 
and anti-sense pairs (collectively termed a probe-
quartet) did not pass the above criteria. Of the 
32,011 pairs, 20,891 passed the quartet filter.

Within-sample ranked FIs of PM probes from 
the 20,891 probe-quartets were then used for 
empirical probe-set discovery. Individual probes 
were clustered into probe-sets by correlating the 
ranked FI across all samples and by taxonomic 
relatedness. In cases where multiple solutions 
were possible, higher correlation coefficients were 
preferred over lower correlation coefficients, taxo-
nomic relatedness at lower taxonomic level was 
preferred over higher ranks, and sets with higher 
number of probes were favoured over sets with 
lower numbers of probes. Probe sets contained 
at least five probes with an average pair-wise cor-
relation coefficient of ≥0.85. After the probe-sets 
were assembled, each probe-set for each sample 
was binary-scored with a 1 if ≥80% of the probe 
pairs assigned passed in that sample, otherwise a 
0 was assigned. In total, 909 probe-sets scored a 1 
in at least one of the 17 samples and the eOTUs of 
each probe set were annotated against Greengenes 
with the aid of a Naïve Bayesian algorithm applied 
to the 9-mers contained in all probes of the set. 
Bootstrap cut-off was set to 80% for all taxo-
nomic levels. Afterwards, the mean ranked FI of 
all probes in one eOTU was determined for each 

sample. These values are referred to as HybScores 
(hybridization scores) and used as abundance 
data of eOTUs.

Topological data analysis
Topological data analysis (TDA) functions as a 
geometric approach to identify small scale and 
large scale patterns within datasets. By under-
standing the shape of the data, which ultimately 
results in signal detection, this method is unsu-
pervised in that it requires no initial hypotheses 
Three key characteristics of topology are essential 
for making the identification of shapes successful 
for assessing very subtle signals in complex data 
sets. These key characteristics are coordinate 
freeness, deformation invariance and compressed 
representation of shapes (Lum et al., 2013). For 
the Deepwater Horizon dataset we employed 
TDA for identifying outlier samples. Using TDA, 
the 17 samples were binned into overlapping 
buckets (in other words, samples can be placed in 
one or more buckets) according to the Gaussian 
density and then data points in the buckets were 
clustered into nodes according to their degree of 
cosine similarity. The calculated topological net-
work was displayed using nodes and edges (Fig. 
5.1), where nodes can contain multiple samples 
and samples can appear in multiple nodes. Nodes 
are connected by edges when they have samples 
in common. Nodes that do not contain any shared 
elements are classified as singletons.

Considering the response of 994,980 individ-
ual probes simultaneously from 17 different arrays 
(10 designated plume samples, 7 non-plume 
samples), TDA identified two major networks, 
one comprising of plume samples and the other 
of non-plume samples. Sample OV01106 (des-
ignated as non-plume sample) forms a separate 
node (a singleton) and could be considered 
neither plume nor non-plume representative. 
Comparing the plume and the non-plume net-
works derived from probes, pairs or quartet (Fig 
5.1A–C), we notice that the two main networks 
do not share samples and the non-plume cluster 
has lower Gaussian density values than the plume 
cluster. A possible interpretation is the non-
plume network represents the high inter-sample 
dissimilarity within the pristine deep-sea micro-
bial community and the inter-sample diversity is 
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attenuated by the plume chemical content, where 
the relationships between the microbial commu-
nities are tighter.

In contrast to probe-, pair- and quartet-level, 
the analysis at set-level uses the re-construction of 
empirical OTUs (eOTUs) from clustering probe 
quartets. Concatenated probe sequences are 
classified using a Bayesian-algorithm against the 
Greengenes taxonomy (McDonald et al., 2012), 
allowing phylogenetic assignments of eOTUs. 
909 eOTUs were identified in the entire dataset 
and their abundances (in units of fluorescence 
intensity) in each sample were used for TDA. 
When conducting TDA on probe-level data, 
pair-level data or quartet-level data, OV01106 was 
clearly an outlier compared to the other groups, 
but from the eOTU-level TDA, OV01106 was 
similar to both plume and non-plume samples. 

Close examination of the metadata revealed 
that although sample OV01106 was classified 
as non-plume based on the fluorescence of the 
water sample measured immediately after collec-
tion, subsequent hydrocarbon analysis revealed 
that OV01106 contained the highest octadecane 
concentration of all non-plume samples (Hazen 
et al., 2010). The slightly increased hydrocarbons 
may have altered the microbial community, which 
was detected by the highly sensitive TDA analysis 
based on probe-, pair- and quartet-level FI. Over-
all, the observations suggest that the PhyloChip 
hybridization data contains subtle dissimilarities 
that can be overlooked when over-summarizing all 
the probe responses into probe-sets. Regardless, 
all four levels agreed that only sample OV01106 
did not belong unambiguously to one group or 
the other.

C) Quartet (20,891)

OV01106Plume

Non Plume

D) eOTU (909)
OV01106

Non Plume

Plume

Gaussian density

A) Probe (994,980)

Plume

Non Plume

OV01106

B) Pair (32,011)

Plume

Non Plume

OV01106

Figure 5.1 ;VWVSVNPJHS�UL[^VYR�VM����ZHTWSLZ�NLULYH[LK�\ZPUN�[OL�0YPZ�ZVM[^HYL��(`HZKP�0UJ����,HJO�UVKL�
�JPYJSL��YLWYLZLU[Z�H�NYV\W�VM�ZHTWSLZ�^P[O�OPNO�JVZPUL�ZPTPSHYP[ �̀�5VKL�KPHTL[LY�JVYYLZWVUKZ�[V�[OL�U\TILY�
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Z\JO�[OH[�UVU�WS\TL�ZHTWSLZ�MVYT�H�Z[YVUN�Z\IJS\Z[LY�HUK�WS\TL�ZHTWSLZ�MVYT�HUV[OLY�Z\IJS\Z[LY��;OLYL�
PZ�VUL�ZHTWSL��HYYV �̂�ZPUNSL[VU��[OH[�KVLZ�UV[�JS\Z[LY�^P[O�LP[OLY�[OL�WS\TL�VY�UVU�WS\TL�ZHTWSLZ�PU�WHULSZ�
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Multivariate statistical analysis 
of PhyloChip data as revealed by 
PhyCA-Stats™
Multivariate statistical procedures can be applied 
to the set-level (eOTUs) based on either their 
hybridization scores (abundance values) or 
on binary metrics (presence/absence). These 
statistics use dissimilarity metrices to calculate 
the relationship between samples based on 
the abundance or binary metrics of the entire 
microbiomes observed. A detailed description 
of these methods can be found in for example 
(Kuczynski et al., 2010). In brief, microbial 
profiles of all samples are inter-compared in a 
pair-wise fashion to determine a dissimilarity 
score, resulting in a distance matrix. Two exam-
ples used herein are the UniFrac distance metric 
as published in (Lozupone and Knight, 2005) 
and the Bray–Curtis Index. While UniFrac uti-
lizes the phylogenetic distance between eOTUs 
to determine the distance between communities, 
Bray–Curtis employs a pair-wise normalization 
by dividing the sum of differences by the sum 
of all abundances. UniFrac distance measure is 
either weighted (based on abundance scores) or 
unweighted (based on binary), whereas the Bray–
Curtis Index calculated from a binary data results 
in the Sørensen Index.

Based on the distance matrix two-dimensional 
ordination analyses or hierarchal clustering maps 
in form of dendrograms are popular methods 
for displaying inter-sample relationships. Two 
examples of ordination methods used in this 
book chapter are principal coordinate analysis 
(PCoA) and non-metric multidimensional scal-
ing (NMDS). PCoA uses the dissimilarity values 
and NMDS the rank of the dissimilarity values to 
position samples in relative distance to each other.

Applying these analysis tools to the microarray 
data set produced during the Deepwater Horizon 
oil spill (Hazen et al., 2010) provided evidence 
for microbial community changes of samples 
inside compared to outside the oil plume. A set of 
these ordinations is depicted in Figs. 5.2 and 5.3. 
PCoA and NMDS plots based on abundance dis-
similarities clearly demonstrate a separation of the 
microbiomes of the plume and non-plume sam-
ples along NMDS 1 or PCoA 1 axis. These results 
are in agreement with reference based PhyloChip 

rOTU analyses published previously (Hazen et 
al., 2010).

Not all factors influencing changes in the 
community structure can be grasped from ordi-
nation analysis or hierarchal clustering methods. 
Microbial communities are generally exposed to 
multiple environmental factors, each of which 
has a variable degree of influence on community 
structure. One method to determine if numeric 
or categorical factors are associated with the 
observed microbial communities is the Adonis 
test. Adonis, also called PERMANOVA, utilizes 
the sample-to-sample distance matrix directly, 
not a derived ordination or clustering outcome. 
Low P-values across categorical variables would 
indicate that samples from different categories 
are generally more dissimilar in their microbi-
omes than samples from the same category. Low 
P-values for continuous variables, such as age, 
would indicate the samples from patients that are 
more similar in age have generally more similar 
microbiomes. Similar to NMDS and PCoA, the 
Adonis test can utilize any dissimilarity metric, 
including UniFrac and Bray–Curtis Index. During 
the sampling cruise of the R/V Ocean Veritas and 
the R/V Brooks McCall after the Deepwater Hori-
zon oil spill, multiple environmental factors were 
collected. These factors encompassed plume/
non-plume, fluorescence, latitude, longitude, 
sampling depth, acridine orange direct count, 
phosphate, ammonia nitrogen concentration, 
dissolved inorganic carbon, total phospholipid 
fatty acids, phospholipid fatty acids trans/cis ratio, 
phospholipid fatty acids 16:1w5c/16:1w7c ratio, 
octadecane and docosane concentration. Adonis 
testing based on weighted UniFrac measures of 
eOTU data demonstrated a highly significant 
influence of the oil spill on the microbial com-
munity structure (P-value 0.001 for plume versus 
non-plume, Table 5.2); fluorescence, which was 
used to detect crude oil (Hazen et al., 2010), 
was also found to be associated with a significant 
change in the microbial community. Similarly, 
concentrations of hydrocarbons (octadecane, 
docosane) in the samples showed a highly sig-
nificant association with microbial community 
profiles. Other factors like sampling depth or the 
total amount of phospholipid-derived fatty acids 
were also found to be significant but with higher 
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P-values. Phospholipids are generally a microbial 
biomarker and are used to estimate microbial 
community changes via lipidomics (Hazen et al., 
2010) or to estimate microbial abundance. An 
overview of Adonis P-values and the multiple fac-
tors tested is presented in Table 5.2.

As mentioned above, set-level based 

analysis also allows also presence/absence call-
ing of eOTUs recorded as the binary variable 1 
or 0. Considering binary metrics, the non-plume 
sample OV01106 was depicted as a possible 
boundary sample. Due to sample OV01106, 
incomplete separation of the microbiomes was 
observed along NMDS1 and PCoA1 axis (Fig. 
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Figure 5.2 6YKPUH[PVU�HUHS`ZPZ�IHZLK�VU�HI\UKHUJL�ZJVYLZ�VM�L6;<Z�WYLZLU[�PU�H[�SLHZ[�VUL�VM�[OL�ZHTWSLZ��
(SS�VYKPUH[PVU�TL[OVKZ�ZOV^�H�ZLWHYH[PVU�VM�WS\TL��JSVZLK�JPYJSLZ��HUK�UVU�WS\TL��VWLU�JPYJSLZ��ZHTWSLZ�
HSVUN�54+:��HUK�7*V(���YLZWLJ[P]LS �̀�*VUZLX\LU[S �̀�KPɈLYLU[�TPJYVIPHS�JVTT\UP[`�Z[Y\J[\YLZ�HYL�WYLZLU[�
PU� WS\TL� HUK� UVU�WS\TL� ZHTWSLZ�� /V^L]LY�� UVU�WS\TL� ZHTWSL� 6=������ WSHJLZ� IL[^LLU� WS\TL� HUK�
UVU�WS\TL�NYV\WZ���(��54+:�IHZLK�VU�>LPNO[LK�<UPMYHJ�KPZ[HUJL�IL[^LLU�ZHTWSLZ�NP]LU�HI\UKHUJL�VM�
 � �[H_H�WYLZLU[�PU�H[�SLHZ[�VUL�ZHTWSL�^P[O�Z[YLZZ�$������ ���)��7*V(�IHZLK�VU�>LPNO[LK�<UPMYHJ�KPZ[HUJL�
IL[^LLU�ZHTWSLZ�NP]LU�HI\UKHUJL�VM� � �[H_H�WYLZLU[� PU�H[� SLHZ[�VUL�ZHTWSL��(_PZ��!�����VM�]HYPH[PVU�
L_WSHPULK��(_PZ��!����VM�]HYPH[PVU�L_WSHPULK���*��54+:�IHZLK�VU�)YH`¶*\Y[PZ�KPZ[HUJL�IL[^LLU�ZHTWSLZ�
NP]LU�HI\UKHUJL�VM� � �[H_H�WYLZLU[�PU�H[�SLHZ[�VUL�ZHTWSL�^P[O�Z[YLZZ�$����������+��7*V(�IHZLK�VU�)YH`¶
*\Y[PZ�KPZ[HUJL�IL[^LLU�ZHTWSLZ�NP]LU�HI\UKHUJL�VM� � �[H_H�WYLZLU[�PU�H[�SLHZ[�VUL�ZHTWSL��(_PZ��!�����
VM�]HYPH[PVU�L_WSHPULK��(_PZ��!����VM�]HYPH[PVU�L_WSHPULK�
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5.3). This same sample was also categorized as 
an outlier in TDA (Fig. 5.1) and placed close to 
plume samples in abundance and binary based 
ordinations of eOTUs (Figs. 5.2 and 5.3). Pres-
ence/absence, or incidence of eOTUs, allows 
comparison of microbial richness. The number 
of eOTUs present in plume samples decreased 

significantly (P = 0.02, ANOVA) compared to the 
number of eOTUs in non-plume samples. This 
result is in accordance with significant P-values in 
Adonis testing (Table 5.2) and with the previous 
rOTU-based analysis (Hazen et al., 2010). In the 
aforementioned reference, presence/absence of 
rOTUs and fluorescence microscopy showed a 
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Figure 5.3 6YKPUH[PVU� HUHS`ZPZ� IHZLK� VU� IPUHY`� TL[YPJZ� VM� L6;<Z�� 0U� JVU[YHZ[� [V� HI\UKHUJL� IHZLK�
VYKPUH[PVUZ��-PN�������� PU�[OYLL�V\[�VM�MV\Y�VYKPUH[PVU�TL[OVKZ�WS\TL�HUK�UVU�WS\TL�TPJYVIPVTLZ�HYL�UV[�
ZLWHYH[LK�HSVUN�54+:��7*V(��H_PZ�K\L�[V�[OL�UVU�WS\TL�ZHTWSL�6=�������;OPZ�ZHTWSL�PZ�JVUZPKLYLK�HU�
V\[SPLY���(��54+:�IHZLK�VU�<U^LPNO[LK�<UPMYHJ�KPZ[HUJL�IL[^LLU�ZHTWSLZ�NP]LU�WYLZLUJL�HIZLUJL�VM� � �
[H_H�WYLZLU[�PU�H[�SLHZ[�VUL�ZHTWSL�^P[O�Z[YLZZ�$����������)��7*V(�IHZLK�VU�<U^LPNO[LK�<UPMYHJ�KPZ[HUJL�
IL[^LLU� ZHTWSLZ� NP]LU� WYLZLUJL�HIZLUJL� VM�  � � [H_H� WYLZLU[� PU� H[� SLHZ[� VUL� ZHTWSL�� (_PZ� �!� ����VM�
]HYPH[PVU�L_WSHPULK��(_PZ��!�����VM�]HYPH[PVU�L_WSHPULK���*��54+:�IHZLK�VU�)YH`¶*\Y[PZ�KPZ[HUJL�IL[^LLU�
ZHTWSLZ�NP]LU�WYLZLUJL�HIZLUJL�VM� � �[H_H�WYLZLU[�PU�H[�SLHZ[�VUL�ZHTWSL�^P[O�Z[YLZZ�$����������+��7*V(�
IHZLK�VU�)YH`¶*\Y[PZ�KPZ[HUJL�IL[^LLU�ZHTWSLZ�NP]LU�WYLZLUJL�HIZLUJL�VM� � �[H_H�WYLZLU[�PU�H[�SLHZ[�VUL�
ZHTWSL��(_PZ��!�����VM�]HYPH[PVU�L_WSHPULK��(_PZ��!�����VM�]HYPH[PVU�L_WSHPULK�
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very restricted microbial community profile in 
samples of high hydrocarbon content.

Identification of taxa enriched in 
plume samples
With its 1.1 million probes tracking more than 
3.0 × 1011 16S rRNA gene molecules per sample, 
PhyloChip G3 technology is highly suited for 
multivariate statistical analysis to display differ-
ences between samples. Furthermore, univariate 
statistics, like a Welch test, can be applied to each 
individual probe/pair/quartet/set across samples 
allowing the identification of taxa that significantly 
increase or decrease in one sample category com-
pared to other. Since TDA identified OV01106 as 
a boundary sample and both NMDS and PCoA 
supported that finding, OV01106 was removed 
from univariate analysis. Table 5.3 provides an 
overview of the percentage of passing taxa at 
each of four resolution levels and at each of seven 
taxonomic levels. Two different corrections for 
multiple testing were applied and, with the most 
stringent correction (Benjamini–Hochberg), 
on average 81.9% of the taxa passed the Welch 
test. The lowest percentage was retrieved for 
species level considering probes and the highest 
percentage for phylum level and eOTUs. In gen-
eral, with increasing taxonomic summarization 

(species → genus → family → order → class → phylum) 
and with increasing probe summarization 
(probe → pair → quartet → set) the greater the per-
centage of taxa passed the univariate significance 
test. Using phylogenetic affiliations, eOTU analy-
sis provides relative abundances for each taxon 
identified in a sample set. Employing a parametric 
Welch test, 104 eOTUs were identified to have 
significantly increased within-plume samples 
compared to non-plume samples. In contrast, 
approximately six times as many taxa decreased 
in abundance within the plume, concordant with 
the significant richness decrease noted above. 
Taxa that were significantly lower in abundance 
in oil-contaminated samples included many 
Archaea. Archaeal probe sets complementary to 
Nitrosopumilus, known for ammonia-oxidation 
in the ocean, or to members of the Thermo-
plasmata marine group II were observed to 
produce significantly lower FI in plume samples 
demonstrating that the microbial community of 
non-contaminated seawater was strongly altered 
by the spill. A selection of the 25 taxa with the 
most significant abundance increase and an addi-
tional 25 taxa with the most significant decrease 
is depicted in Fig. 5.4 as a heatmap. Dendrograms 
were calculated by grouping eOTUs with similar 
abundance changes across samples and applying 

Table 5.2� (KVUPZ P�]HS\LZ based on weighted Unifrac measures of abundance scores of eOTUs. Factors 
with ZPNUPÄJHU[ P�]HS\LZ �IVSK� were associated with TPJYVIPHS community changes

Factor +L[HPSZ P�]HS\L

7S\TL ]LYZ\Z UVU�WS\TL :HTWSL category determined by Å\VYLZJLUJL 0.001
-S\VYLZJLUJL In situ Å\VYLZJLUJL intensity 0.001
Latitude ¶ 0.065
Longitude ¶ 0.593
Depth :HTWSPUN depth 0.037
(6+* (JYPKPUL orange direct count 0.096
Phosphate ;V[HS phosphate 0.419
(TTVUPH (N) ;V[HS ammonia nitrogen 0.115
d13C_DIC +PZZVS]LK inorganic carbon 13C isotope ]HS\L 0.222
;V[HSF73-( ;V[HS WOVZWOVSPWPK fatty acids 0.041
73-(F[YHUZFJPZ 73-(F[YHUZ�JPZ (ratio) 0.224
X16.1w5c_16.1w7c 73-( ��!�^�J���!�^�J (ratio) 0.009
Octadecane 5VYTHSPaLK octadecane concentration 0.002
Docosane 5VYTHSPaLK docosane concentration 0.001
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a pair-wise Euclidean distance measure. A Bray–
Curtis Index-based dendrogram separated the 
plume and non-plume samples into two different 
clusters. eOTUs that significantly increased in 

relative abundance in plume samples included taxa 
classified as Oceanospirillales, an order identified 
to be responsible for the significant hydrocarbon 
degradation during the Deepwater Horizon oil 

Table 5.3 Proportion of the community with ZPNUPÄJHU[ changes in abundance VIZLY]LK between UVU�WS\TL 
and WS\TL ZHTWSLZ� Data was Z\TTHYPaLK by probe-, pair-, quartet- and ZL[�L6;<�SL]LS considering 
aggregated Å\VYLZJLUJL intensities (FI) at ]HYPV\Z taxonomic SL]LSZ� For instance, 23,680 YLZWVUZP]L pairs 
ILSVUNLK to 721 KPɈLYLU[ MHTPSPLZ� -HTPS` sums of FI were compared and HWWYV_PTH[LS` ��� of the MHTPSPLZ 
exhibited a ZPNUPÄJHU[ abundance change between WS\TL and UVU�WS\TL ZHTWSLZ depending on the FDR 
procedure PTWSLTLU[LK� 6\[SPLY ZHTWSL 6=����� was L_JS\KLK from HSS comparisons

Data 
9LZVS\[PVU 9HUR

Count 
of taxa 
considered

Per cent of 
taxa passing 
>LSJO test1

Per cent of taxa 
passing >LSJO test after 
WLYT\[H[PVUHS FDR WLUHS[`2

Per cent of taxa 
passing >LSJO test 
after BH FDR WLUHS[`3

7YVIL�SL]LS ,HJO probe 994,980 5( 5( 5(
Species 4187 ����� ����� �����
Genus 2112 ����� ����� �����
-HTPS` 833 ��� � ����� �����
Order 464  ����  ����  ����
*SHZZ 253  ����  ���� �����
7O`S\T 93  ����  ����  ����

7HPY�SL]LS ,HJO pair 23,680 ����� ����� � ���
Species 2036 ����� ����� �����
Genus 1493 � ��� ����� ��� �
-HTPS` 721 ����� ����� �����
Order 410 ��� � ����� �����
*SHZZ 232 ��� � ����� �����
7O`S\T 88  ����  ����  ����

8\HY[L[�SL]LS ,HJO quartet 20,891 ����� ����� �����
speCies 1453 ����� ����� �����
Genus 1146 ��� � ��� � �����
-HTPS` 631 ����� ����� � ���
Order 376 ����� ����� �����
*SHZZ 222 ����� ����� �����
7O`S\T 85  �� �  �� �  �� �

:L[�SL]LS�
eOTU

eOTU HybScore 910 ����� ��� � �����
Species 259 ����� ����� �����
Genus 244 ����� ����� �����
-HTPS` 207 ����� ����� �����
Order 140  ����  ����  ����
*SHZZ 102  ����  ����  ����
7O`S\T 61  ����  ����  ����

1>LSJO test at P<0.05.
2Number of taxa passing the >LSJO test at P<0.05 after permutation test for MHSZL KPZJV]LY �̀ Permutation test 
KLÄULK as ��� YHUKVTPaH[PVUZ of [H_H�I`�ZHTWSL [HISL MVSSV^LK by >LSJO test (P<0.05). The median number of 
taxa passing the permutation test is subtracted from the >LSJO test on the non-permuted data. 
3Number of taxa passing the >LSJO test at P<0.05 after HWWS`PUN a )LUQHTPUP¶/VJOILYN correction at q<0.05 for 
MHSZL KPZJV]LY` correction. 5(, not JHSJ\SH[LK�
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spill (Hazen et al., 2010; Mason et al., 2012). The 
G3 PhyloChip identified additional microbial taxa 
enriched in plume samples (Dubinsky et al., 2013; 
Hazen et al., 2010) besides the Oceanospirillales. 
As commonly accepted, a complex interplay of 
microbial pathways from a diverse set of microor-
ganisms is necessary to degrade crude oil, which 
may be reflected by these results. Indeed, other 
taxa were found to be enriched in oil plume sam-
ples by multiple NGS methods applied over the 
course of this bioremediation project including 
metagenomics, metatranscriptomics and pyrotag-
sequencing of 16S rRNA genes (Mason et al., 
2012). Nevertheless, all these methods agree that 
Oceanospirillales microorganisms were enriched 
in plume samples, in accordance with microscopic 
analysis and 16S rRNA gene cloning (Hazen 
et al., 2010). Table 5.4 provides an overview of 
microbial families reported as plume-enriched by 
multiple investigations of the Deepwater Horizon 
spill.

Discussion and future trends
‘Everything is everywhere but the environment 
selects’ (Baas-Becking, 1934) is a very common 
statement in environmental microbiology and is 
often used to explain microbial community obser-
vations (de Wit and Bouvier, 2006). However, a 
recent study showed that a persistent microbial 
community with modulation of abundances 
of certain taxa explains community dynamics 
observed in a certain environment (Caporaso 
et al., 2012c). This observation could only be 
achieved by assaying 100-fold more 16S rRNA 
gene molecules than previous attempts with typi-
cal sequencing depth (Gilbert et al., 2009, 2012). 
Therefore, past molecular microbial ecology 
observations based solely on incidence (bacte-
rial taxa ‘present’ in some samples but ‘absent’ 
in others) should be soon re-evaluated. Conse-
quently, the concept ‘everything is everywhere but 
the environment selects’ may need to be refined 
to ‘everything is everywhere but the environment 
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257; Bacteria; Proteobacteria; Gammaproteobacteria; Oceanospirillales; Halomonadaceae; unclassified
227; Bacteria; Spirochaetes; Spirochaetes; Spirochaetales; Spirochaetaceae; Treponema
25; Bacteria; Proteobacteria; Gammaproteobacteria; Pseudomonadales; Pseudomonadaceae; Pseudomonas
171; Bacteria; Firmicutes; Bacilli; Bacillales; Bacillaceae; Bacillus
692; Bacteria; Proteobacteria; Gammaproteobacteria; unclassified; unclassified; unclassified
760; Bacteria; Bacteroidetes; Bacteroidia; Bacteroidales; RikenellaceaeII; unclassified
899; Bacteria; Proteobacteria; Gammaproteobacteria; unclassified; unclassified; unclassified
258; Bacteria; Proteobacteria; Gammaproteobacteria; unclassified; unclassified; unclassified
326; Bacteria; Acidobacteria; Acidobacteria; Acidobacteriales; Acidobacteriaceae; unclassified
798; Bacteria; Bacteroidetes; Bacteroidia; Bacteroidales; RikenellaceaeII; unclassified
467; Bacteria; Proteobacteria; Gammaproteobacteria; Alteromonadales; Shewanellaceae; Shewanella
529; Bacteria; Proteobacteria; Gammaproteobacteria; Pseudomonadales; unclassified; unclassified
585; Bacteria; Bacteroidetes; Bacteroidia; Bacteroidales; unclassified; unclassified
607; Bacteria; Proteobacteria; Gammaproteobacteria; Oceanospirillales; Halomonadaceae; unclassified
313; Bacteria; Proteobacteria; Gammaproteobacteria; Oceanospirillales; Oceanospirillaceae; unclassified
693; Bacteria; Proteobacteria; Deltaproteobacteria; Syntrophobacterales; Desulfobacteraceae; unclassified
311; Bacteria; Proteobacteria; Gammaproteobacteria; Oceanospirillales; Oceanospirillaceae; unclassified
840; Bacteria; Firmicutes; Clostridia; Clostridiales; Lachnospiraceae; unclassified
680; BacterLD��70���70�ï���(:�����XQFODVVLILHG��XQFODVVLILHG
173; Bacteria; Proteobacteria; Gammaproteobacteria; Oceanospirillales; Alteromonadaceae; Marinobacter
433; Bacteria; Planctomycetes; Planctomycea; Planctomycetales; Planctomycetaceae; unclassified
345; Bacteria; Proteobacteria; Gammaproteobacteria; unclassified; unclassified; unclassified
140; Bacteria; Firmicutes; Clostridia; Clostridiales; Lachnospiraceae; unclassified
331; Bacteria; Cyanobacteria; Chloroplast; unclassified; unclassified; unclassified
161; Bacteria; Proteobacteria; Alphaproteobacteria; Rhizobiales; Bradyrhizobiaceae; unclassified
11; Bacteria; Proteobacteria; Deltaproteobacteria; Syntrophobacterales; Desulfobacteraceae; unclassified
15; Bacteria; Proteobacteria; Deltaproteobacteria; Syntrophobacterales; Desulfobacteraceae; unclassified
21; Bacteria; Proteobacteria; Deltaproteobacteria; Syntrophobacterales; Desulfobacteraceae; unclassified
22; Bacteria; Proteobacteria; Deltaproteobacteria; Syntrophobacterales; Desulfobacteraceae; unclassified
10; Bacteria; Proteobacteria; Deltaproteobacteria; Syntrophobacterales; Desulfobacteraceae; unclassified
12; Bacteria; Proteobacteria; Deltaproteobacteria; Syntrophobacterales; Desulfobacteraceae; unclassified
19; Bacteria; Proteobacteria; Deltaproteobacteria; Syntrophobacterales; Desulfobacteraceae; unclassified
3; Bacteria; Firmicutes; Clostridia; Clostridiales; Lachnospiraceae; unclassified
17; Bacteria; Proteobacteria; Deltaproteobacteria; Syntrophobacterales; Desulfobacteraceae; unclassified
6; Bacteria; Proteobacteria; Gammaproteobacteria; Oceanospirillales; Halomonadaceae; Halomonas
5; Bacteria; Proteobacteria; Betaproteobacteria; Burkholderiales; Comamonadaceae; unclassified
32; Bacteria; Gemmatimonadetes; Gemmatimonadetes; unclassified; unclassified; unclassified
9; Bacteria; Proteobacteria; Deltaproteobacteria; Syntrophobacterales; Desulfobacteraceae; unclassified
23; Bacteria; Proteobacteria; Deltaproteobacteria; Syntrophobacterales; Desulfobacteraceae; unclassified
35; Bacteria; Proteobacteria; Gammaproteobacteria; Chromatiales; Chromatiaceae; unclassified
29; Bacteria; Bacteroidetes; Flavobacteria; Flavobacteriales; Corymorphaceae; unclassified
2; Bacteria; Firmicutes; Clostridia; Clostridiales; Lachnospiraceae; unclassified
4; Bacteria; Firmicutes; Clostridia; Clostridiales; Lachnospiraceae; unclassified
7; Bacteria; Proteobacteria; Deltaproteobacteria; Syntrophobacterales; Syntrophobacteraceae; unclassified
8; Bacteria; Proteobacteria; Deltaproteobacteria; Syntrophobacterales; Desulfobacteraceae; unclassified
18; Bacteria; Firmicutes; Clostridia; Clostridiales; Lachnospiraceae; unclassified
14; Bacteria; Proteobacteria; Deltaproteobacteria; Syntrophobacterales; Desulfobacteraceae; unclassified
33; Bacteria; Proteobacteria; Betaproteobacteria; Burkholderiales; Comamonadaceae; unclassified
20; Bacteria; Proteobacteria; Deltaproteobacteria; Syntrophobacterales; Desulfobacteraceae; unclassified
30; Bacteria; Bacteroidetes; Sphingobacteria; Sphingobacteriales; Flexibacteraceae; unclassified
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selects the abundance’. Moreover, this important 
finding demonstrates the need to apply molecular 
methods that can track abundance changes in 
both the majority and minority populations in 
order to provide a more complete assessment of 
microbial population dynamics in the environ-
mental or clinical samples investigated.

The G3 PhyloChip is currently the high-
throughput tool that can assay the most number of 
16S rRNA gene molecules per sample of all plat-
forms available. In the current study, we explored 
the resolution of PhyloChip at various stages 
from annotation-free analysis at probe-level to 
pair- to quartet- to set-level, where eOTUs are tax-
onomically classified. Exploring less summarized 
hybridization FI resulted in higher resolution of 
microbial community dissimilarities using TDA. 
With decreasing resolution the ability to capture 
outliers is diminished (e.g. sample OV01106 
in this study). However, as a general caution, 
relying on a single probe, probe pair or probe 
quartet has risks since in 30% of paired events in 
controlled experiments, the mismatch has been 
shown to out-fluoresce the perfect match probe 
(Furusawa et al., 2009). Accordingly, relying on 
multiple pairs, or even better multiple quartets, 
allows greater confidence in the sequence-specific 
detection event. Another advantage to the probe 
sets over individual probes is the increase in clas-
sification confidence derived with a larger number 
of probes aiding in the taxonomic identification of 
the populations in flux.

In general, annotation of 16S rRNA genes 
poses a challenge to the scientific community. 
Associating a short NGS sequence or set of probes 
to a named taxonomic node is not always reliable. 
Not every strain or even species has a unique 16S 
rRNA gene sequence and can hence be accurately 
identified (e.g. some strains of Salmonella, Shigella 
and Escherichia have identical 16S rRNA gene 
sequences). The widely applied method to classify 
16S rRNA gene sequences in a high-throughput 
manner is the application of a Naïve Bayesian 
algorithm as demonstrated by (Wang et al., 2007). 
However, the breadth of the reference database 
affects the perceived confidence of taxonomic 
classification. Specifically, the less diverse the ref-
erence database, the more confident the Bayesian 
outcomes can appear. By definition, the lower the 

number of taxonomic bins the greater the chance 
that a sequence will fall into one bin. More impor-
tantly, the sequence length and the region of the 
16S rRNA gene (hypervariable versus conserved) 
are crucial for accurate classification. The shorter 
the sequence, the less data for matching and spe-
cies level classification is not normally expected 
from reads 400 bps and shorter, which are cur-
rently produced by next generation sequencing 
platforms (Wang et al., 2007).

High-throughput sequencing technolo-
gies have been developed to analyse microbial 
communities, especially for understanding the 
microbial diversity via sequencing of 16S rRNA 
gene amplicons (Caporaso et al., 2012a; Sogin et 
al., 2006), and have provided many novel insights 
(Bartram et al., 2011; Degnan and Ochman, 
2012; Deng et al., 2012; Engelbrektson et al., 
2010; He et al., 2010; Mason et al., 2012; Yat-
sunenko et al., 2012; Zhou et al., 2012). However, 
compared to microarray-based technologies (e.g. 
PhyloChip), some disadvantages or limitations 
for sequencing technologies remain. First, there 
are a variety of sequencing errors and chimeric 
sequences although they may be difficult to 
identify (Edgar, 2013; Huse et al., 2007; Kunin et 
al., 2010; Pinto and Raskin, 2012; Schloss et al., 
2011). For instance, based on mock community 
samples, the average error rate of 16S rRNA by 
pyrosequencing was 0.6%, and chimera rate was 
8% of the total number of reads (Schloss et al., 
2011), although those errors could be reduced 
or minimized with appropriate sequence analysis 
pipelines which remove a large portion of the 
data (Edgar, 2013; Schloss et al., 2011). Sequence 
errors and chimeras may generate numerous 
spurious OTUs, which can inflate the perceived 
microbial diversity (Edgar, 2013; Kunin et al., 
2010; Roh et al., 2010). Although these spurious 
OTUs may resemble new species, they have led 
to an intensive debate regarding how much of 
the ‘rare biosphere’ is due to sequencing artefacts 
(Schloss et al., 2011; Sogin et al., 2006). Second, 
since very few DNA molecules are actually 
sequenced, under-sampling occurs resulting in 
low reproducibility and quantitation (Zhou et 
al., 2008, 2011, 2013). The effect of random sam-
pling processes on technical reproducibility was 
explicitly demonstrated by recent mathematical 
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modelling and simulations (Zhou et al., 2013). 
Also, sequencing approaches tend to sequence 
dominant species, which may lead to skewed 
results, especially for rare species due to repeat-
edly sampling those dominant populations. In 
addition, 16S rRNA gene sequencing data analy-
sis may be more difficult or still in development 
(McMurdie and Holmes, 2013), while microarray 
data analysis approaches have been largely devel-
oped and are widely used.

Due to the unique features and advantages 
and disadvantages provided by both microarray-
based and sequencing-based technologies, it is 
preferred that they are complementarily used for 
microbial community analysis in order to address 
fundamental questions in microbial ecology and 
environmental biology.

Future trends tend to improve not only 
laboratory-based technologies for producing 16S 
rRNA gene amplicons but also bioinformatics 
data mining and the development of novel data 
analysis tools. Traditionally, 16S rRNA gene 
amplicons are generated from total DNA extracts 
from an environmental sample. In contrast to 
RNA, DNA is more stable and can remain in 
an environment even after its organism is no 
longer alive. Thus, DNA-based methods may not 
accurately reflect the living/active members of a 
community. One solution for this shortcoming 
is the extraction of rRNA from the environment 
and direct use for hybridization or subsequent 
reverse-transcription to cDNA (DeAngelis et 
al., 2011). The community profile retrieved by 
these rRNA-based methods can be significantly 
different from the community tracked by total 
DNA-based methods (DeAngelis and Firestone, 
2012; DeAngelis et al., 2011). One bottleneck 
of rRNA-based methods is the amount of rRNA 
that can be extracted from an environmental 
sample. This is easily possible for soil microbial 
communities but hard for low-biomass environ-
ments or studies with limited access to biomass. 
A second alternative to total DNA-based 
methods is the usage of propidium monoazide 
(PMA), which has successfully been applied 
to low-biomass clean room environments, 
where rRNA extraction fails (Vaishampayan et 
al., 2013). PMA applied to an environmental 
sample intercalates into free-DNA molecules 

(DNA of dead organisms) but cannot enter 
cells with an intact cell membrane (Nocker et 
al., 2007). After photoactivation PMA covalently 
binds to DNA and hampers the binding of the 
DNA polymerase during PCR amplification of 
16S rRNA genes. Similar to the rRNA-based 
method, PMA treatment significantly alters the 
microbial community structure of environmen-
tal samples, if DNA of dead organisms is present 
in high amounts (Vaishampayan et al., 2013).

One bioinformatics technique for the analysis 
of G3 PhyloChip data is the pre-selection of spe-
cific probe sequences uniquely complementing 
16S rRNA genes of a specific strain of interest. 
For instance, a strain could be selected which was 
hypothesized to be enriched in healthy versus 
diseased samples. After identification of a certain 
probe for a specific strain, the relative abundance 
change of the strain can be tracked in any subse-
quently generated data set. Using this approach, 
a single probe tracking a specific Archaeon in 
the environment has been recently leveraged 
(Probst et al., 2013). We envisage simplistic 
software applications to read the G3 PhyloChip 
or future generations of the devise and report on 
pre-defined probe features useful for dedicated 
purposes such as waste-water treatment plant 
monitoring or clinical diagnostics.

One major bottleneck of microarray-based 
community profiling is the identification of 
potentially new species, which is theoretically 
possible with 1.5 kb full-length 16S rRNA gene 
sequencing technologies but can also lead to the 
artificial ‘rare biosphere’ generated by sequencing 
errors. The new Sinfonietta analysis to generate 
eOTUs described herein, can be used to track 
potentially novel species. In a recent publication, 
a novel subsurface Archaeon could be tracked by 
the G3 PhyloChip, although its 16S rRNA gene 
was not included in the original design database 
due to its novelty (Probst et al., submitted). The 
authors do not recommend that a novel species 
should be proposed based solely on PhyloChip 
or NGS data, however they can be included in the 
analysis of microbiome dynamics.

In the near future, one major life science 
research focus will continue to be in comparative 
analysis of human gut microbiomes in healthy, 
diseased and treated states. We predict that 
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metatranscriptomics will be essential in discover-
ing the method of action by which microbes can 
cause or prevent disease. But since taxonomic 
profiling has been the standard first step in dis-
ease profiling, and 16S rRNA gene amplification 
is relatively simple to apply, we expect that 16S 
rRNA gene technologies will continue to be 
employed in the coming years. The past literature 
can be summarized into four guiding principals 
for the clinical molecular microbial ecologist: 
(1) taxon abundance, not incidence, is what dif-
ferentiates healthy and diseased patient groups 
in microbiome-associated conditions; (2) tens 
of billions of DNA fragments are generated from 
each bio-specimen; (3) precise estimates of per 
cent composition of each taxa in a community 
are elusive; and (4) changes in both majority 
and minority populations may contribute to gut 
health. Thus, correspondingly, the data collec-
tion and analysis methods should have these four 
properties: (1) ability to gather reproducible 
measurements of taxon abundance; (2) ability for 
tens of billions of DNA fragments to affect what-
ever sensors are used in a routine assay; (3) ability 
to detect taxon abundance changes across health 
groups; and (4) not inclined to majority popula-
tions obscuring minority ones. The G3 PhyloChip 
fulfils all four.

Conclusions
PhyloChip data analysis can be executed at several 
stages providing various resolutions to the user. 
Observations from analysis based on individual 
probes, pairs of probes, or quartets of probes ena-
bled the detection of outliers via TDA compared 
with analysis based on probe-sets for empirically 
derived eOTUs. The advantages of reducing data 
to empirical OTUs are: (1) the greater resolution 
on taxonomic annotation of the microorgan-
isms tracked compared to single probes; (2) the 
non-reliance on pre-defined sets of probes based 
on reference OTUs from databases; and (3) the 
potential to track population shifts from microbes 
previously not included in such databases (Probst 
et al., 2013).

The variety of data analysis tools presented 
here agree well with each other concerning the 

over-arching biological conclusions that can 
be extracted, despite different mathematical 
fundamentals. Topological data analysis (TDA) 
identified two major clusters of samples differ-
entiating the microbiomes of oil-contaminated 
samples from non-contaminated samples. The 
same observations were made using principal 
coordinate analysis and non-metric multidimen-
sional scaling based on eOTUs. Considering 
the initial results of the Deepwater Horizon oil 
spill presented in Hazen et al. (2010), the eOTU 
analysis and the TDA herein agree well with 
reference-based OTU (rOTU) sample group-
ing and with the lipidomics presented in the 
aforementioned reference. For these reasons, 
empirical eOTU discovery is recommended as 
a starting point for G3 PhyloChip data analysis, 
and quartet-level processing is recommended for 
advanced outlier detection and developing novel 
applications and prototype diagnostics on the 
PhyloChip platform.

Although next-generation sequencing plat-
forms are continuously improving and may one 
day inexpensively produce trillions of sequences 
as long as the entire 16S rRNA gene with high 
accuracy for the full length of the entire read, 
array-based methods are mature, reproducible 
and sensitive to changes in populations when 
comparing microbiomes. Consequently, any 
detailed microbiome investigation where popula-
tion dynamics are hypothesized would benefit 
from 16S rRNA gene amplification followed by 
PhyloChip hybridization and analysis.

Web resources
Raw PhyloChip G3 data from Hazen et al. (2010). (and 

rOTU analysis) can be found here: http://greengenes.
lbl.gov/Download/Microarray_Data/Hazen_2010_
Science.tgz

Further information can be requested from the 
corresponding author.

PhyloChip G3 assay and data analysis are commercially 
available at Second Genome Inc.:

(http://www.secondgenome.com/)
Topological data analysis is commercially available at 

Ayasdi Inc.:
(http://www.ayasdi.com/)
Resources for phylogenetic analysis of 16S rRNA genes 

and corresponding databases are provided at the 
Greengenes website hosted by Second Genome Inc.: 
(http://greengenes.secondgenome.com/)

Devi Ramanan
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