
Topological Approaches to Deep Learning

Gunnar Carlsson
Department of Mathematics, Stanford University

Stanford, California 94305

Rickard Brüel Gabrielsson
Department of Computer Science, Stanford University

Stanford, California, 94305

November 6, 2018

1 Introduction

Deep neural networks [10] are a powerful and fascinating methodology for solving problems with
large and complex data sets. They use directed graphs as a template for very large computations,
and have demonstrated a great deal of success in the study of various kinds of data, including images,
text, time series, and many others. One issue that restricts their applicability, however, is the fact
that it is not understood in any kind of detail how they work. A related problem is that there is
often a certain kind of overfitting to particular data sets, which results in the possibility of so-called
adversarial behavior, where they can be made to fail by making very small changes to image data
that is almost imperceptible to a human. For these reasons, it is very desirable to develop methods
for gaining understanding of the internal states of the neural networks. Because of the very large
number of nodes (or neurons), and because of the stochastic nature of the optimization algorithms
used to train the networks, this is a problem in data analysis, specifically for unsupervised data
analysis. The initial goal of the work in this paper was to perform topological data analysis (TDA)
on the internal states of the neural nets being trained on image data to demonstrate that TDA can
provide this kind of insight, as well as to understand to what extent the neural net recapitulates
known properties of the mammalian visual pathway. We have carried out this analysis, and the
results are reported in Section 4. We show that our findings are quite consistent with the data
analytic results on image patches in natural images obtained in [2]. In addition, we are able to study
the learning process in one example, and also to study a very deep pre-trained neural network, with
interesting results which clarify the roles played by the different layers in the network.

Having performed these experiments, we became interested in the question of how to apply the
knowledge obtained from our study to deep learning more generally. In particular, we asked how
one might generalize the convolutional neural net (CNN) construction to other data sets, so as to
obtain methods for constructing efficient nets that are well adapted to other large classes of data
sets, or individual data sets. We found that the key idea from the image CNN construction is

1

ar
X

iv
:1

81
1.

01
12

2v
1 

 [
cs

.L
G

] 
 2

 N
ov

 2
01

8



the fact that the set of features (pixels) is endowed with a geometry, which can be encoded in a
metric, coming from the grid in which the pixels are usually arranged. However, in most data sets,
one has one or more natural notions of distance between features, and generalizations based on
such metrics appeared to be a potentially very powerful source of methods for constructing neural
nets with restrictions on the connections based on such a metric. The idea of studying geometric
properties of features has been foreseen by M. Robinson in [11] under the heading of topological
signal processing. The second goal for us in this paper, then, is to introduce a mathematical
formalism for constructing neural network structures from metric and graph based information on
the feature space of a data set. We also find that this formalism simplifies and makes precise the
specification of neural networks even while using standard methods. In Section 5.2 we evaluate
the improvements possible from the very simplest application of this idea. The nature of the
improvements come in two directions. The first is in speeding up the learning process. The
training of neural nets can be quite a time consuming process, and it is clearly desirable to lower
the cost (in time) of training. We found that the methods were more effective on more complex
data sets, which is encouraging. A second kind of improvement is in the direction of generalization.
When training on image data sets, it is standard procedure to select two subsets of the data set,
one the training set and the other the test set. The network is trained on the training set, and
accuracy is evaluated on the test set. This procedure is designed to guard against overfitting, and
the accuracy often achieves very impressive numbers. However, one can consider the problem of
training on one data set of images and evaluating on an entirely different data set. For example,
there are two familiar data sets consisting of images of digits, one MNIST [7] and the other SVHN
[16]. The first is a relatively “clean” data set, The second is actually obtained from images of
numbers for the addresses of houses. One could attempt to train on MNIST and evaluate accuracy
not on a different subset of MNIST, but rather SVHN. Surprisingly, the results of this process yield
abysmal results, with an accuracy very close to that achieved by random selection of classifications.
We demonstrate that by the use of the methods we have discussed one can improve the accuracy
significantly, although still not to an acceptable level. It suggests that further application of the
methods could give us much improved generalization.

We identify three separate scenarios giving rise to geometric information about the feature space.
The first is where by its very construction, a set of features is equipped with a geometric structure.
Typical examples of this situation are images or time series, where, for example, the pixels (features
of images) are designed with a rectangular geometry in mind. The second is where a geometry is
obtained from studies such as that performed in [2]. Finally, there is a situation where one is given
a more or less general data matrix with numerical entries, and imposes a metric on it via standard
choices of metric such as Euclidean, Hamming, etc. Once this has been done, it is important to be
able to compress this geometric information into a smaller representation, something which can be
achieved by the Mapper construction [12].

We believe that the study of the geometry of the feature space attached to various kinds of data sets
will be a very powerful tool that can inform the construction and improve the performance of neural
networks. Additionally, because we have incorporated geometric methods in the constructions,
we also believe that our formalism opens the door to more sophisticated, detailed, and nuanced
mathematical analysis of neural networks.

2



2 Neural Nets

This section will introduce feed-forward neural nets as well as the special case of convolutional
neural nets (CNN’s).

Definition 2.1 By a feed-forward system of depth r we will mean a directed acyclic graph Γ with
vertex set V (Γ) with the following properties.

1. V (Γ) is decomposed as a disjoint union

V (Γ) = V0(Γ) t V1(Γ) t · · · t Vr(Γ)

2. If v ∈ Vi(Γ), then every edge of the form (v, w) of Γ has w ∈ Vi+1(Γ).

3. The nodes in V0(Γ) (respectively Vr(Γ)) are called initial nodes (respectively terminal nodes).

4. We assume that for every non-initial node w ∈ Vi(Γ), there is at least one v ∈ Vi−1(Γ) so
that (v, w) is an edge in Γ.

5. For each vertex v of Γ, we denote by Γ(v) (respectively Γ−1(v)) the set of all vertices w of Γ
so that (v, w) (respectively (w, v)) is an edge of Γ.

The sets Vi(Γ) are referred to as the layers of the feed-forward system. We say that a layer Vi(Γ)
is locally finite if the sets Γ−1(v) are finite for all v ∈ Vi(Γ). By a sub-feed-forward system of a
feed-forward system Γ of depth r, we mean a directed subgraph Γ0 ⊆ Γ so that the graph Γ0 and the
families of vertices V0(Γ)∩Γ0, . . . , Vr(Γ)∩Γ0 themselves form a feed-forward system. In particular,
it must be the case that for each v ∈ Γ0, the set Γ−1(v) ∩ Γ0 must be non-empty.

Remark 2.1 Note that we do not assume that Γ is finite. It is sometimes useful to use infinite
feed forward systems as idealized constructions with useful finite systems contained in it.

Remark 2.2 We have described only the simplest kinds of structures used in neural nets. There
are many others, which can also be described using the methodology we are introducing, but we
leave them to future work.

It is also useful to have a slightly different point of view on feed-forward systems. Recall that a
correspondence from a set X to a set Y is a subset C ⊆ X × Y . It is clear that one can compose
correspondences, and for any correspondence C : X → Y we will write C(x) = {y ∈ Y |(x, y) ∈ C}
and C−1(y) = {x ∈ X|(x, y) ∈ C}. We also say that a correspondence C : X → Y is surjective if
C−1(y) 6= ∅ for all y ∈ Y . These notions are familiar, but we give some particular examples that
will be relevant for the construction of convolutional neural networks.

Example 2.1 Given any two sets X and Y , we have the complete correspondence Cc(X,Y ) : X →
Y , defined b y Cc(X,Y ) = X × Y .

3



Example 2.2 Given any map of sets f : X → Y , we have the functional correspondence Cf : X →
Y attached to f , defined to consist of the points in the graph of f , defined to be {(x, f(x))|x ∈ X}.

Example 2.3 Let C : X → U and D : Y →W , we define the product correspondence

C × D : X × Y → U ×W

by the requirement that ((x, y)(u,w)) ∈ C × D if and only if (x, u) ∈ C and (y, w) ∈ D.

Example 2.4 Let X be a metric space, with distance function d. Suppose further that we are
given a non-negative threshold r. Then we define Cd(r) : X → X, the metric correspondence with
threshold r from X to itself, by Cd(r)(x) = {x′|d(x, x′) ≤ r}. It will occasionally be useful to permit
the definition of metric spaces to include the possibility of infinite values. The three axioms of
metric spaces extend in a natural way to this generality.

Example 2.5 Let Γ be graph, with vertex set V = V (Γ). Then the graphical correspondence
CΓ : V → V is defined by (v, v

′
) ∈ CΓ if and only if (v, v

′
) is an edge in Γ.

We now give the definition of a kind of object that is completely equivalent to a feedforward system.

Definition 2.2 Let Ir denote the totally ordered set {0, 1, . . . , r} regarded as a category. By a
generator for an r-layer feed-forward system, we will mean a functor F from the category Ir to
the category Cor of finite sets and correspondences. The associated feed-forward system has as its
vertex set

∐
F (i), and where there is a connection from v ∈ F (i) to w ∈ F (j) if and only if (1)

j = i+ 1 and (2) (v, w) ∈ F (i→ i+ 1).

Feed-forward systems are used to describe and specify certain computations. The nodes are con-
sidered variables, so will be assigned numerical values which we call rv. The nodes in the 0-th or
initial layer are regarded as input variables, so they are in one to one correspondence with variables
that are attached to a data set.

Definition 2.3 By an activator, we will mean a triple (µ, S, f), where µ is a commutative semi-
group structure on R, S is a subsemigroup of the multiplicative semigroup of R, and f : R→ R is a
function, which we call the cutoff function. Given a feedforward structure Γ, an activation system
for Γ is a choice of an activator (µv, Sv, fv) for each non-initial vertex of Γ. A coefficient system
for a feed-forward system Γ and activation system (µv, Sv, fv) is a choice of element λ(u,v) ∈ Sv for
each edge (u, v) of Γ.

Remark 2.3 Typically we use only a small number of distinct activators, and also assign all the
nodes in a given layer the same activator. For purposes of this paper, the only semigroup structures
on R we use are the additive structure and the commutative operation (x, y) → max(x, y). Also,
for the purposes of this paper, the only choices for S will be either all of R or {1}, but in other

4



contexts there might be other choices. The cutoff function may be chosen to be the identity, but
in general is a continuous function that is a continuous version of a function that is zero below a
threshold and 1 above it. The ring R can be replaced by other rings, such as the field with two
elements, which can be useful in Boolean calculations.

We now wish to use this data to construct functions on the input data. We assume we are given
a locally finite feed-forward structure Γ, equipped with an activation system A = (µv, Sv, fv) and
a coefficient system Λ = {λ(u,v)}. For each i, with 0 ≤ i ≤ r, we set Wi equal to the real vector
space of functions from Vi(Γ) to R. We now define a function ϕi = ϕi(− : A,Λ) : Wi−1 → Wi, for
0 ≤ i ≤ r, on a function g : Vi−1 → R by

ϕi(g)(v) = fv(
∑

(u,v)∈Γ

λ(u,v)g(u))

Note that the sum is computed using the monoid structure µv, and is taken over all edges of Γ with
terminal vertex v. This set is finite by the local finiteness hypothesis. We have now constructed
functions ϕi : Wi−1 →Wi for all 0 ≤ i ≤ r, and therefore can construct the composite

Φ = Φ(−;A,Λ) = ϕr ◦ ϕr−1 ◦ · · · ◦ ϕ1

from W0 to Wr, i.e. a function from the input set to the output set.

The final requirement is the choice of a loss function. Given a set of points D ⊆W0, and a function
F : D → Wr, the goal of deep learning methods is to construct a function ϕ as above that best
approximates the function F in a sense which has yet to be defined. If the function is viewed
as a continuous function to the vector space Wr, then the finding the best L2 approximation is
quite reasonable, and the L2 distance from the approximating function to F will be defined to be
the loss function. If, however, the output function is categorical, i.e. has a finite list of values,
then it is often the case that the possible outputs are identified with the vertices in the standard
(n− 1)-simplex

{(x1, . . . , xn)|xi ≥ 0 for all i and x1 + · · ·+ xn = 1}

in Rn, and other loss functions are more appropriate. The output function still takes continuous
valued, and the goal becomes to fit a continuous function to the discrete one. One could of course do
this directly, but it has been found that fitting certain transformations of the continuous function
perform better. One very common choice is the following. Suppose that from the construction of
the neural net, it is known that the values of the neurons in the terminal layer are always positive
real numbers. Define σn : Rn+ → Rn+ by

σn(x1, . . . , xn) =
1

x1 + · · ·+ xn
(x1, . . . , xn) (2–1)

The function σn takes its values in the standard (n−1) simplex. The softmax function is the compos-
ite σ ◦ exp, where exp denotes the function (x1, . . . , xn)→ (ex1 , . . . , exn) from Rn to Rn. A standard
procedure for optimizing fitting a continuous function F with discrete values {α1, α2, . . . αn} is to
minimize the L2 error of the transformed function

σn ◦ exp ◦ ϕ

5



where n is the number of neurons in the output layer. This notion of loss or error is referred to as
the softmax loss function.

Deep learning proceeds to minimize the chosen loss function of the difference between Φ(−;A,Λ)
and a given function g over the possible choices of the coefficients λ(v,w) using a stochastic variant
of the gradient descent method. Note that F is typically empirically observed, it is not given as
a formula. The optimization process often is time consuming, and occasionally becomes stuck in
local optima. We refer to a feed-forward system equipped with activation system as a neural net.

Definition 2.4 Consider a locally finite feed-forward system Γ, possibly infinite, equipped with an
activation system A. Let Γ0 ⊆ Γ be a sub-feed-forward system. If A is an activation system on Γ,
then it is clear that its restriction A|Γ0 to Γ0 is an activation system for Γ0 and that similarly, a
coefficient system Λ on Γ restricts to an coefficient system Λ|Γ0 on Γ0. We will call the neural net
(Γ0,A|Γ0) the restriction of the neural net (Γ,A) to Γ0.

There is an additional kind of structure on a feed-forward system that is particularly useful for
data sets of images, as well as other types of data.

Definition 2.5 By a convolutional structure on a layer Vi(Γ) in a feed-forward system Γ we mean
a pair (', ψ), where ' is an equivalence relation on the set of vertices of Vi(Γ), and where ψ is an
assignment of a bijection

ψ(v,w) : Γ−1(v)→ Γ−1(w)

for any pair (v, w) in ', satisfying the requirement that ψ(v,w) = ψ−1
(w,v) and ψ(w,v) = ψ(w,u) ◦ ψ(u,v)

when defined. An activation system for Γ is said to be adapted to the convolutional structure on a
layer Vi(Γ) if whenever v ' w, it is the case that (µv, Sv, fv) = (µw, Sw, fw). A coefficient system
{λ(v,w)} for the neural net (Γ,A) is adapted to a convolutional structure {', ψ(v,w)} if it satisfies
the compatibility requirement that whenever v ' w, then we have

λ(u,v) = λ(ψ(v,w)(u),w)

for all u ∈ Γ−1(v).

Example 2.6 Suppose that a layer Vi(Γ) and the layer Vi−1(Γ) are acted on by a group G, and
suppose further that for any v ∈ Vi−1(Γ) and w ∈ Vi(Γ), (v, w) is an edge in Γ if and only if
(gv, gw) is an edge for all g ∈ G. Suppose further that the actions on both Vi−1(Γ) and Vi(Γ)
are free, so that the only element of G that fixes a node is the identity element. We define an
equivalence relation ' on Vi(Γ) by declaring that v ' w if and only if there is an element g ∈ G
so that gv = w. Because of the freeness of the action, v and w determine g uniquely. We define
the bijection ψ(v,w) : Γ−1(v) → Γ−1(w) to be multiplication by g. Because the group preserves
the directed graph structure in Γ, g does carry Γ−1(v) to Γ−1(w). The application of this idea to
data sets of images uses the group Z2, whose points correspond to an infinite pixel grid. We call
structures defined this way Cayley structures.

6



The description of a convolutional layer in Example 2.6 is useful in many situations where the
group, and therefore the feed-forward system, are infinite. Nevertheless, it is useful to adapt the
networks to finite regions in the grid, such as N ×N grids within an infinite pixel grid. This fact
motivates the following definition.

Definition 2.6 We suppose that we have a feed-forward structure Γ, a layer Vi(Γ) equipped with
a convolutional structure {', ψ(v,w)}, and a sub-feed-forward structure Γ0 ⊂ Γ. The restriction
of the equivalence relation to Vi(Γ0) does give an equivalence relation on Vi(Γ0), but it does not
necessarily have the property that the restriction of the bijections ψ(v,w) to Γ−1(v)∩Vi−1(Γ0) remains
a bijection. We will define an equivalence relation '0 on Vi(Γ0) by declaring that v '0 w if and
only if (a) v ' w as vertices in Vi(Γ) and (b) ψ(v,w) restricts to a bijection from Γ−1(v)∩ Vi−1(Γ0)
to Γ−1(w) ∩ Vi−1(Γ0). This clearly produces a convolutional structure on the layer Vi(Γ0) in the
feed-forward structure Γ0, which we refer to as the restriction of the convolutional structure e
{', ψ(v,w)} on Vi(Γ) to Γ0.

3 Natural Images and Convolutional Neural Nets

Data sets of images are of a great deal of interest for many problems. For example, the task of
recognizing hand drawn digits or letters from images taken of them is a very interesting problem,
and an important test case. Neural net technology has been successfully applied to this situation,
but in many ways the success is not well understood, and it is believed that it is often due to
overfitting. Our goal is to understand the operation of this methodology better, and to use that
understanding to improve performance in terms of speed, and of the ability to generalize from one
data set to another. In this section we will discuss image data sets, the feed-forward systems that
have been designed specifically for them, the extent to which the neural networks act similarly to
learning in humans and primates, and how such insights can be used to speed up and improve
generalization from one image data set to another.

By an image, we will mean an assignment of numbers (gray scale values) to each pixel of a pixel
array, typically arranged in a square. The image can be regarded as a P -vector, where P denotes
the number of pixels in an array. However, the grid structure of the pixels tells us that there is
additional information, namely a geometric structure on the set of coordinates in the vector. It turns
out to be useful to build neural nets with a specific structure, reflecting this fact. For simplicity
of discussion, it turns out to be useful to build infinite but locally finite models first, and then
realize the actual computations on a finite subobject of these infinite constructions, by restricting
the support of the activation systems we consider in the optimization. We will be specifying our
neural networks by generators. First, we let Z denote the integers. By Z2 = Z×Z we will mean the
metric space whose elements consist of ordered pairs of integers, and where the distance function
is the restriction of the L∞ distance on R2. We of course have the metric correspondences from
Z2 to itself. We will define another family of correspondences called pooling correspondences. For
any pair of integers m ≤ n, let [m,n] denote the intersection of the interval [m,n] in the real line
with the integers. Let N denote a positive integer, and define a correspondence π(m,n,N) to be
α−1 where α : Z→ Z is defined by α(x) = [Nx+m,Nx+ n]. We have two parameters that are of
interest for these correspondences, the stride, which is the integer N , and the width, which is the

7



integer n −m + 1. To give a sense of the nature of these correspondences, consider the situation
with stride and width both equal to 2, and with m = 0. In this case, it is easy to check that the
correspondence π(0, 1, 2) is given by x → bx2 c. In general, if the stride is equal to the width, the
correspondence π(m,n,N) is actually functional, and the corresponding function is N to 1. We’ll
write πs(m,n,N) for the s-fold product of π(m,n,N) as a correspondence from Zs to itself.

It will be useful to have a language to describe the layers in a feed-forward system in terms of the
generators.

Definition 3.1 Let Γ denote a feed-forward system, with generator F : Ir → Cor. For any i ∈ Ir,
we consider the i-th layer F (i) as well as the correspondence θi = F (i− 1 < i) : F (i− 1)→ F (i).

1. We say the layer F (i) is fully connected if θi is the complete correspondence Cc(F (i−1), F (i)),
as defined in Example 2.1.

2. We say F (i) is grid convolutional if there are sets X and Y , so that θi is of the form

Cc(X,Y )× Cd(r) : X × Z2 → Y × Z2

where Cd(r) is a metric correspondence as defined in Example 2.4.

3. We say F (i) is pooling if θi is of the form

Cc(X,Y )× π2(m,n,N) : X × Z2 → Y × Z2

Remark 3.1 The reason for taking the product of convolutional or pooling correspondences with
complete correspondences is in order to accommodate the idea of including numerous copies of a
grid within a layer, but with the understanding that the graph connections between any copy of a
grid in F (i−1) and any copy in F (i) are identical. This is exactly what the product correspondence
achieves.

We are now in a position to build some convolutional neural networks. We will do so by constructing
a generator. The generator is a functor that can be specified by a diagram like the following, where
writing X(n) denotes a set of cardinality n.

X(1)× Z2 Cc × Cd(1)
−−−−−−−−→ X(64)× Z2 Cc × π2(0, 1, 2)

−−−−−−−−−−−→ X(64)× Z2 Cc−−→ X(10) (3–2)

To further simplify the description, we note that there is product decomposition of the functor F .
For an two functors F,G : C → Cor, we can form the product functor F ×G, which is defined to
be the point wise product on object, and which also forms the product correspondences. It is clear
from the description above that the functor we have described decomposes as the functor F0 × F1,
where F0 is given by

X(1)
Cc−→ X(64)

Cc−→ X(64)
Cc−→ X(1)

8



and F1 by

Z2 Cd(1)
−−−−→ Z2 π2(0, 1, 2)

−−−−−−−−→ Z2 Cc−−→ X(10)

This kind of decomposition is ubiquitous for neural networks, where there is one functor F consisting
entirely of complete correspondences. We will say a generator F is complete if each of the corre-
spondences F (i < i+ 1) is a complete correspondence, and describe generators F as F = F c × F s,
where F c is a complete correspondence, and F s will be referred to as the structural generator. We
note that a complete correspondence F is completely determined by the cardinalities of the sets
F (i), and so we specify F by its list of cardinalities. We say that the type of a complete generator
F : Ir → Cor is the list of integers

[#F (0),#F (1), . . . ,#F (r)]

and note that the type determines the structure of F .

4 Findings

Because of the stochastic nature of the optimization algorithms used in convolutional neural nets,
the problem of understanding how they function is a problem in data analysis. What we mean by
this is that it is a computational situation where there are outliers which are not meaningful, and
a useful analysis must proceed by understanding what the most common (or dense) phenomena
are, in a way that permits one to ignore the outliers, which will be sparse. Before diving into the
methodology and results of our study, we will talk about earlier work [2] on the statistics of natural
images which is quite relevant to our results on convolutional neural nets.

The work in [2] was a study of a data set constructed by Mumford et al in [8] based on a database
of images collected by van Hateren and van der Schaaf [13]. The images were taken in Groningen
in the Netherlands, and Mumford et al collected a data set consisting of 3× 3 patches, thresholded
from below by variance of the patch. Each patch consists of nine gray scale values, one for each
pixel. The data was then mean centered, and the contrast (a weighted version of variance) was
normalized to have value 1. This means that the data can be viewed as residing on the sphere S7,
a subspace of R8. Finally, the data was filtered by codensity, a function on the data set defined at
a point x to be the distance from x to its k-th nearest neighborhood. The integer k is a parameter,
much as variance is a parameter in kernel density estimators, and the codensity varies inversely
with density.

What was done in [2] as to select a threshold value ρ (a percentage) for the codensity computed for
a value k, and consider only points whose codensity was less than ρ. For example, one might study
the set of data points which are among the lowest 25% in codensity, computed for the parameter
value k = 300. This was carried out in [2] for a 30% threshold value, and for the parameter values
k = 300 and k = 15.

These diagrams were obtained by examining the data following persistent homology computations
which showed β1 = 1 in the case of Figure 1 and β1 = 5 in the case of Figure 2 (note that in the
case of Figure 2 the model is not actually three disjoint circles, instead each of the secondary circles

9



Figure 1: k = 300, ρ = 30% Figure 2: k = 15, ρ = 30%

intersects the primary circle in two data points. The work in [2] went further and found more
relaxed thresholds that yielded a Klein bottle instead of just a one skeleton, indicating that more
is going on. It meant that the data set actually included arbitrary rotations of the two secondary
circles in Figure 2. The original motivation for the work in [13] and [8] was to understand if analysis
of the spaces of patches in natural images is reflected in the “tuning” of individual neurons in the
primary visual cortex. We set out to determine if the statistical analysis of [2] has a counterpart in
convolutional neural networks for the study of images. The following are insights we have obtained.

• The role of thresholding by density or proxies for density is crucial in any kind analysis of
this kind. Without that a very small number of outliers can drastically alter the topological
model from something giving insight to something essentially useless.

• The development of neural networks was based on the the idea that neural networks are
analogous to networks of neurons in the brains of mammals. There is an understanding [5]
that the primary visual cortex acts as a detector for edges and lines, and also that higher
level components of the visual pathway detect more complex shapes. We perform an analysis
analogous to the one in [2], and show that it gives results consistent with the density analysis
performed there.

• We demonstrate that our observations can be used to improve the ability of a convolutional
neural network to generalize from one data set to another.

• We demonstrate that the results can be used to speed up the learning process on a data set
of images

We next describe the way that the data analysis was performed. We suppose that we have fixed an
architecture for a convolutional neural network analysis of a data set of images, using grid layers
as described in Section 3. We used an architecture in which the correspondences Cd(1) described
the connections into a convolutional layer, where d is the L∞ metric on the grids. This means that
any node in a grid layer is connected to the nodes which belong to a 3 × 3 patch surrounding it.
The weights therefore constitute a vector in R9, which corresponds exactly to raw data used in [8].

10



The data points will be referred to as weight vectors. In [4], we performed analyses on data sets
constructed this way using a methodology identical to that carried out in [8] and [2]. The rest of
this section will describe the results of this study.

We first discuss the two data sets that we studied. The first is MNIST [7], which is a data set of
images of hand drawn digits. The images are given as 28 × 28 gray scale images. For this data
set, we used an architecture described as follows. The depth is 6, and the generator F is a product
of two generators, F c and F s. The complete factor F c is of type [1, 64, 64, 32, 32, 64, 1], and the
structural factor has the form

G28
Cd(1)
−−−→ G28

π2(0, 1, 2)
−−−−−−→ G14

Cd(1)
−−−−→ G14

π2(0, 1, 2)
−−−−−−→ G7

Cc−−→ X(1)
Cc−−→ X(10) (4–3)

where Gi ⊆ Z2 denotes an i× i grid, X(i) denotes a set of cardinality i, and the output layer X(10)
is identified with the ten digits 0, 1, . . . , 9. This feed-forward structure embeds as a sub-feed-forward
structure of the structure F s∞ obtained by replacing all the finite grids Gi with copies of Z2, into
which they embed. Therefore, the layers F s(1) = G28 and F s(3) = G14 inherit a convolutional
structure from the Cayley convolutional structure (defined in Definition 2.6) on F s∞, which is the
convolutional structure we use. The activation systems are defined using two different activation
functions f . The first is the rectifier, which denotes the function f(x) = max(0, x), and which is
often also denoted by ReLU. The second is the identity function and the third is the exponential
function exp(x) = ex. The activation system is given on the layers F (1) and F (3) by (+,R, ReLU),
on the layers F (2) and F (4) by (max, {1}, id), on the layer F (5) by (+,R, ReLU), and on the layer
F (6) by (+,R, exp). The loss function (defined on the layer F (6)) is the function σn defined in
(2–1) above.

We now look at results for the neural net trained on MNIST. Figure 3 shows a Mapper analysis
of the data set of weight vectors in the first convolutional layer in the neural net described above.
The neural net was trained 100 separate times, and each training consisted of 40,000 iterations of
the gradient descent procedure. In each node, one can form the average (in R9) of the vectors in
that node. The patches surrounding the Mapper model are such averages taken in representative
nodes of the model near the given position. We see that the Mapper model is in rough agreement
with the circular model in Figure 1 above.

In Figure 4, we see persistence barcodes computed for for the data set. The computation confirms
the presence of connectedness of the data set as well as the presence of a significant loop, which
is a strong indication that the Mapper model is accurately reflecting the structure of the data set.
Figure 5 shows a Mapper model of the second convolutional layer. One observes that there appear
to be patches which are roughly like those in the primary circle, but the structure is generally more
diffuse that what appeared in the first layer. Persistence barcodes did not confirm a loop in this
case.

The second data set is CIFAR-10 [6], which is a data set of 32×32 color images objects divided into
10 classes, namely airplane, automobile, bird, cat, deer, dog, frog, horse, ship, and truck. The color
is encoded using the RGB system, so that each pixel is actually equipped with three coordinates,
one for each of the three colors red, green, and blue. There are different options about how to
analyze color image data, and we examined three of them.

11



Figure 3: MNIST layer 1

Dimension 0

0 0.2 0.4 0.6

Dimension 1

0 0.2 0.4 0.6

Figure 4: Barcode for layer 1

Figure 5: MNIST layer 2

12



1. Reduce the colors to a single gray scale value by taking a linear combination of the three
color values, and then analyze the data set as a collection of gray scale images. We used the
combination .2989 ·R+ .5870 ·G+ .1140 ·B. This choice is one standard choice made for this
kind of problem. See https://en.wikipedia.org/wiki/Luma %28video%29 for a discussion.

2. Study the individual color channels separately, producing three separate gray scale data sets,
one each for red, green and blue.

3. Consider all three color channels together, and build a neural network to accommodate that.
This means in particular that the input layer will need to include three copies of the 32× 32
grid.

For options (1) and (2), we constructed a neural net very similar to the one used for MNIST.
Its complete factor F c is of type [1, 64, 64, 32, 32, 64, 1], identical to the one used for MNIST. The
structural factor F s has the form

G32
Cd(1)
−−−→ G32

π2(0, 2, 2)
−−−−−−→ G16

Cd(1)
−−−−→ G16

π2(0, 1, 2)
−−−−−−→ G8

Cc−−→ X(1)
Cc−−→ X(10) (4–4)

The generator is identical to the one for MNIST except for the substitution of G32, G16, and G8

for G28, G14, and G7, respectively, and for the substitution of a pooling layer of width 3 as the
correspondence between F s(1) and F s(2). The activation systems are identical to those in the
MNIST case, as is the loss function. For option (3), it is necessary to form an additional complete
factor G of type [3, 1, 1, 1, 1, 1, 1], and form the product F c × F s ×G as the generator. Of course,
the 3’s correspond to the set {R,G,B}. The activation systems and loss functions are identical in
all three cases.

We first performed an analysis in the case of option (1). The results were not as clear as in the
MNIST analysis, but did give some indications of interesting structure. In particular, the second
layer had the Mapper model shown in Figure 6 below. Notice that the primary circle is included,
together with a kind of “bullseye” patch which does not appear even in the Klein bottle model given
in [2]. We also analyzed option (3) above. In this case, the result was quite striking. A Mapper
model of the first layer appears in Figure 7, which we see recovers the three circle model of [2], and
where a persistence barcode for this space appears in Figure 8. We also analyzed option 2 above,
and found strong primary circles in that case. The findings confirm that generally, the convolutional
neural network well reflects the density analysis in [2], as well as the results on the primary visual
cortex given in [5]. Moreover, the detection of the bullseye shown in Figure 6 demonstrates that
the higher levels of the neural network find more complex patches, not accounted for by the low
level analysis encoded in the Klein bottle of [2]. This is also consistent with our understanding
of the visual pathway, in which there are higher level units above the primary visual cortex that
capture more “abstract” shapes.

We also examined the learning process for CIFAR-10. We did this by performing the analysis in the
case of option (1) above at various stages of the optimization algorithm. Figure 9 shows the results
for both first and second layers. The numbers below the models show the number of iterations
corresponding to the models above them. Most of the models shown are “carpets”, which simply
reflects the choice of two filter functions for the model. This means that they are not topologically
interesting by themselves. However, each node in the a Mapper model consists of a collection of

13



Figure 6: CIFAR-10 layer 2, gray scale

Figure 7: First layer, CIFAR-10, separate colors

Dimension 0

0 0.06 0.12 0.18 0.24 0.30

Dimension 1

0 0.06 0.12 0.18 0.24 0.30

Figure 8: Persistence barcode, Figure 7

14



data points, and the cardinality of that set becomes a function on the set of vertices of the model.
Sub- or superlevel sets of that function can then give interesting information, loosely correlated
with density. The models in Figure 9 illustrate this, particularly strongly in the first layer. We
note that the first layer, beginning with something near random after 100 iterations, organizes itself
into a recognizable primary circle after 200 iterations, remains at that structure until roughly 900
iterations, when the circle begins to “degrade”, and instead form a structure which is capturing
patches more like those of the secondary circles. The second layer, on the other hand, is not
demonstrating any strong structure until it has undergone 1000 or 2000 iterations, when one begins
to see the primary circle appearing. One could interpret this as a kind of compensation for the
changes occurring in the first layer.

Figure 9: CIFAR-10 learning

Finally, we examined a well known pretrained neural network, VGG16, trained on Imagenet, a large
image data base [15],[3]. This neural net has 13 convolutional layers, and so permits us to study
seriously the “responsibilities” of the various layers. Mapper models of the sets of weight vectors

Figure 10: VGG16

15



for layers 2-13 are shown in Figure 10. In this case, the neural net has sufficiently many grids in
each layer to construct a useful data set from this network alone. Observe that the first two layers
give exactly a primary circle, and that after that more complex things appear. Secondary circle
patches occur in layer 4, and in higher layers we see different phenomena occurring, including the
bullseye we saw in CIFAR-10, as well as crossings of lines. One interesting line of research would
be to assemble all of these different phenomena into a single space, including the Klein bottle. The
advantage of doing this is that it will permit feature generation in terms of functions on the space,
such as was done in [14], or improved compression algorithms as in [9]. For now, the outcome
demonstrates with precision how the higher layers encode higher layers of abstraction in images,
as occurs in the mammalian visual pathway.

5 Feature Geometries and Architectures

5.1 Generalities

Since CNN’s have demonstrated a great deal of success on data sets of images, the idea of trying
to generalize it suggests itself. To perform the generalization, one must identify what properties of
image data sets are being used, and how. There are two key properties.

• Locality: The features in image data set (i.e.pixels) are equipped with a geometry, i.e. that
of a rectangular grid. That grid is critical in restricting the connections in the corresponding
feed-forward structure, and that restriction can be formulated very simply in terms of the
L∞ distance function on the grid, as we have seen in our constructions of CNN’s in Section 4.
This observation suggests that one can use other metric spaces to restrict the connections in
architectures based on these metric spaces. We note that the grid geometry can be regarded
as a discretization of the geometry of the plane, or of a square in the plane.

• Homogeneity: The convolutional neural net is equipped not only with a connection struc-
ture, but a choice of convolutional structure (as in Definition 2.5), which creates its own
restrictions on the features created in the neural net. Because it requires that weight vectors
associated with one point in the grid be identical with those constructed at other points,
the convolutional property should be interpreted as a kind of homogeneity. In addition to
putting drastic limitations on the features being created in the neural net, this restriction
encodes a property of image data sets that we regards as desirable, namely that the same
object occurring in different parts of an image should be detected in an identical fashion.

What we would like to do is to describe how the two properties above can be used to construct
neural nets in an analogous fashion, to improve performance on image data sets and to generalize
the ideas to more general data sets. In order to have a notion of locality, we will need to understand
data sets in terms of the geometry of their sets of features. We identify at least three methods in
which feature sets can obtain a geometry.

1. A priori geometries: The prime example here is the image situation, where the grid ge-

16



ometry is explicitly constructed in the construction of the data. The continuous version of
this geometry is that of the plane. Other examples would include time series, where the a
priori continuous geometry is the line, or periodic time series, where the geometry is that of
the circle. The geometries for the building of the neural net would be discretizations of these
geometries, obtained by selecting discrete subsets, often in a regular way.

2. Geometries obtained from data analysis: The data analysis performed in [2] or [4] reveals
that the frequently occurring local patches in images concentrate around a primary circle, and
that these patches are well modeled by particular functions which can be algebraically defined.
We will show below that this fact permits the construction of a set of features for images which
admit a circular geometry. One could also construct a Klein bottle based set of features and
a corresponding Klein bottle based geometry on that set.

3. Purely data drive geometries: In many situations one does not want to perform a detailed
modeling procedure for the set of features, but nevertheless wants to use feature geometries
to restrict connections in neural nets which are designed to learn a function based on the
features. In this case, one can use the Mapper methodology [12] to obtain discretized versions
of geometries on the feature space, well suited to the construction of neural nets.

Section 3 can be regarded as a discussion of one case where an a priori geometry is available, so we
will not discuss it further. Instead, we will give examples of data analytically obtained geometries
and purely data driven constructions.

5.2 Data-analytically Defined Geometries

We first consider the data analytic work that was done in [2] and [4]. We find that the frequently
occurring patches are approximable by discretizations of linear intensity functions onto a 3 × 3
grid. To be specific, we regard the pixels in a 3 × 3 patch to be embedded in the square I2 =
[−1, 1] × [−1, 1], as the subset L = {−1, 0, 1} × {−1, 0, 1}. The discretization operation can be
considered as the restriction of a function on I2 to L. We consider the set of linear functions in
two variables given by the formulae

fθ(x, y) = x cos(θ) + y sin(θ)

The set of functions is parametrized by the circle valued parameter θ. For each fθ, we can construct
a function on an image as follows. Let (m,n) ∈ Z2 denote a particular pixel in the grid defining
an image data set D consisting of images p, with p(m,n) denoting the gray scale value of an image
within the data set. Given an angle θ, we now define a function qm,n,θ(p) on D by the formula

qm,n,θ(p) =
∑

(i,j)∈L

p(m+ i, n+ j) · fθ(i, j)

In this case the continuous geometry associated to the feature space for these images is R2 × S1.
The discretization will be choosing a rectangular lattice L for R2 in the usual way, and by choosing
the set µn of n-th roots of unity for the circular factor. So the discretized form is Z2×µn. This set
is a metric space in its own right, and we can use the metric correspondences defined in Example
2.4 to construct generators and neural nets based on this geometry.

17



Remark 5.1 There are similar synthetic models with a Klein bottle K replacing S1. There are
natural choices for discretizations of K as well.

We have demonstrated that there are methods of imposing locality on new features that have been
constructed based on the data analysis of image patches and of weight vectors in convolutional
neural nets. For this construction, there are also convolutional structures as defined in Definition
2.5. In fact, they are Cayley structures in the sense of Example 2.6, as we can readily see from the
observation that the metric space Z2×µn is equipped with a free and transitive action by the group
Z2×Z/nZ, and this group action determines a Cayley convolutional structure. This gives a number
of possibilities for the construction of new feed-forward systems with feature geometries taken in
to account. To see how these might look, let’s consider the feed-forward system F described in
(3–2) above. F is broken into a product F = F s × F c, where F c is a complete generator, and the
structural factor F s is given by

Z2 Cd(1)
−−−−−→ Z2 π2(0, 1, 2)

−−−−−−−−→ Z2 Cc−−−−→ X(10)

The idea will be to construct new structural factors by taking products with generators involving
only µn for various n’s. We’ll call these generators angular factors. The simplest one is of the form

µn
Cc−−→ X(1)

Cc−−→ X(1)
Cc−−→ X(1)

Here X(1) denotes a one element set. The corresponding structural factor including the grids would
then be

Z2 × µn
Cd(1)× Cc
−−−−−−−−→ Z2 ×X(1) ' Z2 π2(0, 1, 2)

−−−−−−−−→ Z2 Cc−−−−→ X(10)×X(1) ' X(10)

The effect of this modification is simply to use the newly constructed features directly in the
computation. It permits the algorithm to use them directly rather than having to “learn” them.
Another angular factor is

µn
Cc−−→ µn

Cc−−→ X(1)
Cc−−→ X(1)

Forming the product of this angular factor with F s and ultimately F c as well produces a feed-
forward structure which creates new angular factors in layer 1. The corresponding neural networks
would be able to learn angle dependent functions from earlier angular functions. Yet another
angular factor would be the following.

µn
Cd(ξ)−−→ µn

Cc−−→ X(1)
Cc−−→ X(1)

where ξ is the distance from (1, 0) to the primitive root of unity ζn = (cos(2π
n ), sin(2π

n )). Adding
this angular factor to F s creates new angular features in layer 1, allows these angular features to
learn from angular and raw features, and further restricts that learning so that a given angular
feature would only depend on raw values and angular features in the input that are near to the
given feature in the metric on µn. This is the angular analogue to the idea that a convolutional
neural net permits a feature in a convolutional layer to depend only on features in the preceding
layer that are spatially close to the given feature, in this case in the a priori geometry on pixel
space.

18



There is also an analogue for µn to the pooling correspondences π(m,n,N) defined in Section 3.
They are correspondences from πm,n : µmn −→ µn, and they are defined by

πm,n(ζxmn) = ζ
b x
m
c

n

It is easy to verify that this is well-defined. We have only created analogues to the correspondences
π(0, n− 1, n) from Section 3, but analogues for other values of m,n, and N exist as well. We could
now construct a new angular factor

µmn
Cd(ξ)−−−−→ µmn

πm,n−−−−→ µn
Cc−−→ X(1)

which would incorporate pooling in the angular directions as well. Each of these constructions have
analogues for the case of the Klein bottle geometries.

We have some preliminary experiments involving the simplest versions of these geometries. We
have used them to study MNIST, as well as the SVHN data set [16]. SVHN is another data set of
images of digits, collected by taking photographs of house numbers on mailboxes and on houses.
For these studies, we have simply modified the feed-forward systems by constructing the product
of the existing structural factors described in (4–3) and (4–4) with an additional structural factor
of the form

(µ16)+
Cc−−→ X(1)

Cc−−→ X(1)
Cc−−→ X(1)

Cc−−→ X(1)
Cc−−→ X(1)

Cc−−→ X(1) (5–5)

where (µ16)+ plus denotes µ16 with a disjoint point added. This additional point is there so that
we include the original “raw” pixel features. This amounts to including the “angular” coordinates
described above as part of the input data, and using it to inform the higher level computations. We
have two results, one in the direction of speeding up the learning process and the other concerning
the generalization from a network trained on MNIST to SVHN.

• We found substantial improvement in the training time for both MNIST and SVHN when
using the additional angular features. A factor of 2 speed up was realized for MNIST, and
a factor of 3.5 for SVHN. MNIST is a much cleaner and therefore easier data set, and we
suspect that the speed up will in general be larger for more complex data sets.

• We also examined the degree to which a network trained on one data set (MNIST) can
achieve good results on another data set (SVHN). Using the standard convolutional network
for images, we found that a model trained on MNIST applied to SVHN achieved roughly 10%
accuracy. Since there are 10 distinct outcomes, this is essentially the same as selecting a clas-
sification at random. However, when we built the corresponding model using the additional
factor (5–5) above, we found that the accuracy improved to 22%. Of course, one wants much
higher accuracy, but what this finding demonstrates is that this generalization problem can
be substantially improved using these methods.

In these examples, we have only used the simplest versions of the constructions we have discussed in
Section 2. The possibilities that we envision going forward include taking products with structural
factors of the form

(µ4n)+
Cd(ξ4n)+−−−−→ (µ4n)+

(π4n,2n)+−−−−→ (µ2n)+
Cd(ξ2n)+−−−→ (µ2n)+

(π2n,n)+−−−−→ (µn)+
Cc−−→ X(1)

Cc−−→ X(1) (5–6)

19



The correspondences Cd(ξ2in)+ and (π2in,2i−1n)+ for i = 0, 1, 2 in this feed-forward system are
straightforward generalizations of Cd(ξ2in) and π2in,2i−1n to the situation where the disjoint base
point + has been added. (Cd(ξn))+ is obtained by constructing a metric on (µn)+ for which the
distance from the point + to each of the elements of µn, as well as all the distances between
adjacent roots of unity, are all equal to ξn. It is not hard to see that this can be done. (π2n,n)+ is
the functional correspondence which is equal to π2n,n on µn and which carries the point + to +.
The effect of this construction is that it would include angular features at the higher layers, and
that it would restrict the angular features that are constructed to include only those which involve
nearby angular features in the preceding layers.

5.3 Purely Data Driven Geometries

Suppose that we are given a data set defined by a data matrix D, with the rows corresponding to
the data points and the columns corresponding to the features, but that we have no theory for the
features analogous to the one described in [2]. What we generally have, though, are metrics on the
set of features. If the matrix entries are continuous, one can use Euclidean distance of the features
viewed as column vectors. There are variants, such as mean centered and/or variance normalized
versions, correlation distance, angle distance, etc. If the entries of the matrix are binary, then
Hamming distance is an option. In general, it is most often possible to define, in natural ways,
metrics on the set of columns. This means that the feature set is a metric space, and therefore that
we already have the possibility of carrying out part of the process used on image data sets, namely
the construction of the correspondences Cd(r) : X → X, where X denotes the feature set. We refer
to the column space equipped with a metric as the feature space. These can be used to create a
counterpart for the initial convolutional layers in the feed-forward system, but it does not give a
counterpart to the pooling correspondences. The pooling correspondences are important because
they allow one to study features that are more broadly distributed in the geometry of the feature
space. To construct deeper networks, one may also need an analogue for higher level convolutional
layers. There is an approach using the Mapper methodology introduced in [12] that will directly
construct a counterpart to pooling methodology.

We recall that the output of Mapper, applied to a finite metric space X, is a graph Γ, with an
assignment to each vertex v of Γ a subset Xv of X, having the following two properties:

1. Every point x ∈ X is contained in Xv for some vertex v of Γ.

2. Two vertices v and w of Γ are connected by an edge if and only if Xv ∩Xw 6= ∅.

We observe that this means that if we have two Mapper models (Γ, {Xv}v∈V (Γ)) and (Γ
′
, {X ′w}w∈V (Γ′ ))

on the same metric space X, then there is a well-defined correspondence

C(Γ,Γ′) : V (Γ)→ V (Γ
′
)

defined by the property that for (v, w) ∈ V (Γ) × V (Γ
′
), (v, w) ∈ C(Γ,Γ′) : V (Γ) → V (Γ

′
) if and

only if Xv ∩X
′
w 6= ∅.

20



These properties allows us to construct two specific correspondences. Given a metric space X and
a Mapper model (Γ, {Xv}v∈V (Γ)) for the feature space of a data matrix, we have the augmentation
correspondence ε : X → V (Γ), defined by (x, v) ∈ X × V (Γ) if and only if x ∈ Xv. We also have
the correspondence C(Γ,Γ) : V (Γ)→ V (Γ).

Remark 5.2 The correspondence C(Γ,Γ) is simply the graph correspondence CΓ defined in Exam-
ple 2.5.

To define analogues to pooling correspondences, we need a bit more detail on the Mapper construc-
tion. It begins with one or more projections f : X → R, which we call filters. Typically there are
only a small number of f ’s, perhaps 1,2, or 3, and we denote the collection of filters by {fα}α∈A,
where it is understood that #A is small. We now construct a family of open coverings of the real
line.

Definition 5.1 Given a pair (l, s) of real numbers with l > s, we define the covering U(l, s) to
consist of all intervals of the form (ks − l

2 , ks + l
2), k ∈ Z. The condition l > s guarantees that

the family is a covering. Given a pair (l, s), we defined the double of (l, s) to be the pair (2l, 2s).
U(2l, 2s) covers R with intervals of double the length of the intervals comprising U(l, s). We refer
to l as the length and s as the stride.

Let n denote the cardinality of A, and equip A with a total ordering, so A = {α1, . . . , αn}. Let
F : X → Rn denote the product fα1 × · · · × fαn . For each filter fα, we choose a pair (lα, sα). For
each α ∈ A, we let Uα = U(lα, sα), and let Uα = {Iαβα}βα∈Bα , where Bα is an indexing set for the
intervals in Uα. We now construct the product covering Uα1 ×Uα2 ×· · ·×Uαn of Rn, which consists
of sets of the form Iα1

βα1
× · · · × Iαnβαn , for all choices of n-tuples (βα1 , . . . , βαn) in Bα1 × · · · × Bαn .

We denote this covering by V = {Vj}j∈J , where J is the indexing set. We now create overlapping
subsets (bins) of the form F−1(Vj). These sets form a covering of X. The algorithm defined in [12]
next proceeds by clustering (using a predefined clustering algorithm) each of the bins, creating a
partition of each bin. The vertex set of the Mapper model Γ of X consists of one element for each
block of each partition of each bin, and we declare that two vertices are connected by an edge if
and only if the corresponding blocks overlap. Note that the blocks can overlap because the bins
overlap. It is clear from the construction that this construction has the two properties ascribed
to it above. Note that the construction described above depended only on the choices (lα, sα).
The result of applying the above construction to the choices (2lα, 2sα) will be referred to as the
double of Γ, and we will denote it by Γ(1), where it is understood that Γ = Γ(0). We can iterate
this process to obtain a sequence of Mapper models Γ(0),Γ(1), . . . ,Γ(r), where Γ(i+ 1) should be
viewed as a “coarsening” of Γ(i) or “lower resolution model” than Γ(i). Just as we use pooling
correspondences to pass from a higher resolution image to a lower resolution image, so we can
now use the correspondences C(Γ(i),Γ(i+ 1)) as methods from passing to high resolution to lower
resolution versions of the feature space for an arbitrary data matrix.

We show how this will work by constructing an analogue of the depth 6 generator constructed for
MNIST in (4–3) above. We suppose that we have selected a metric on the column space of our data
matrix, and further that we have built a Mapper model Γ = Γ(0), together with the doublings Γ(1)

21



and Γ(2). Further, we suppose we are trying to solve an N -outcome classification problem, where
N was 10 in the actual MNIST case. As in the MNIST case, the generator will decompose as a
product of a complete generator F c and a structural generator F s. The complete generator can be
chosen arbitrarily. The analogue to the structural generator in (4–3) is given by the following.

X
ε−−→ Γ(0)

C(Γ(0),Γ(1))
−−−−−−−−→ Γ(1)

C(Γ(1),Γ(1))
−−−−−−−−→ Γ(1)

C(Γ(1),Γ(2))
−−−−−−−−→ Γ(2)

Cc−→ X(1)
Cc−→ X(N)

Unlike the data analytically driven neural nets, this construction has not yet been done but is in
development.

Finally, we point out that one need not adhere rigidly to the doubling strategy described above.
Choosing any families of coverings that are increasing, in the sense that l and s are both increasing,
also can give families of correspondences that can act as replacements for pooling correspondences.

References

[1] G. Carlsson, Topology and data, Bull. Amer. Math. Soc. 46 (2009), 255-308

[2] G. Carlsson, T. Ishkhanov, V. de Silva, and A. Zomorodian, On the local behavior of spaces of
natural images, Intl. Jour. Computer Vision, 76, (2008), 1-12

[3] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. FeiFei. Imagenet: A large-scale hierarchical
image database, In IEEE Conference on Computer Vision and Pattern Recognition, 2009.

[4] R.B. Gabrielsson and G. Carlsson, A look at the topology of convolutional neural networks,
arXiv:1810.03234v1

[5] D. H. Hubel and T.N. Wiesel, Receptive fields, binocular interaction and functional architecture
in the cat’s visual cortex, Journal of Physiology, 160(1): 106-154, 1962.

[6] A. Krizhevsky, Learning multiple layers of features from tiny images, Technical report, Uni-
versity of Toronto, 2009.

[7] Y. LeCun, The MNIST database of handwritten digits, http://yann.lecun.com/exdb/mnist.

[8] A.B. Lee, K.S. Pedersen, and D. Mumford, The non-linear statistics of high-contrast patches
in natural images, Intl. Jour.of Computer Vision, 54 (1-3), (2003) 83-103.

[9] A. Maleki, M. Shahram, and G. Carlsson, Near optimal coder for image geometries, Proc.
IEEE Int. Conf. Image Processing (ICIP), San Diego, CA, 2008 (paper can be found at
https://www.ece.rice.edu/ mam15/Kleinlet fullversion)

[10] K. Priddy and P. Keller, Artificial Neural Networks. An Introduction, SPIE Press, 2005.

[11] M.Robinson, Topological Signal Processing, Springer Verlag, 2014.

[12] G. Singh, F. Mémoli, and G. Carlsson, Topological methods for the analysis of high dimensional
data sets and 3D object recognition, SPBG, 2007, 91-100

22

http://arxiv.org/abs/1810.03234
http://yann.lecun.com/exdb/mnist


[13] J. H. van Hateren and A. van der Schaaf, Independent component filters of natural images
compared with simple cells in primary visual cortex, Proceedings of the Royal Society of London
Series B, 265, 1998, 359-366.

[14] J. Perea and G. Carlsson, A Klein Bottle-based dictionary for texture representation, Interna-
tional Journal of Computer Vision, vol. 107, 75-97, 2014.

[15] K. Simonyan and A. Zisserman, Very Deep Convolutional Networks for Large-Scale Image
Recognition, CoRR 1409.1556, 2014.

[16] http://ufldl.stanford.edu/housenumbers/

23

http://ufldl.stanford.edu/housenumbers/

	1 Introduction
	2 Neural Nets
	3 Natural Images and Convolutional Neural Nets
	4 Findings
	5 Feature Geometries and Architectures
	5.1 Generalities
	5.2 Data-analytically Defined Geometries
	5.3 Purely Data Driven Geometries


